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Abstract

In recent years, many datasets which need to be analyzed are complicated. Complicated

data structures may arise when the assumptions of the probabilistic structure of the

observations are very general or when some of the observations are not complete. The

goal is to develop statistical theory to overcome these difficulties and to develop a theory

that will ensure reasonable inference.

A common model which assumes a very general probabilistic structure is statistical

classification. In statistical classification, the explaining variable is multi-dimensional and

the dependent variable is binary. The goal is to construct a classifier, which is a function

that classifies a new explanatory point to one of the two values of the dependent variable.

The success of a classifier is commonly measured by its test error which is the probability of

misclassification. Hence, the test error is an important quantity that measures the success

of the classifier. However, inference for the test error is difficult due to the generality of

the model; therefore, even the rate of convergence is unclear. In chapter 2 we propose

inference for the test error which is based on confidence intervals (CIs). We construct

two types of CIs—one is called a naive CI. The naive CI has a relatively simple structure.

The other type is called an adaptive CI. The construction of the adaptive CI is more

complicated and requires gentle arguments in the theory of empirical processes. Our

proposed CIs are based on two common methods—normal approximation and empirical

bootstrap.

Another form of complicated data structure is when the data is not complete. Such

a structure is common in survival analysis. In Chapter 3, we consider survival analysis

data. This data arises from screening a medical condition and considers patients who

wait in an emergency department (ED) queue. The observations are distinguished by

three categories. Some patients lose their patience and decide to quit the queue. If a

patient notifies the system that he is leaving, then an exact record of his patience time is

observed; if a patient enters the emergency department, then only a lower bound of his

patience time is observed; if a patient decides the leave the queue but is not notifying the

system, then eventually he will be called to the ED and hence only an upper bound for his
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patience time will be observed. In this scenario, the exact patience time is recorded only

among patients who leave the queue and report it. Despite the fact that for a large portion

of the patients, the patience time is not recorded, in Chapter 3, we propose parametric

and nonparametric estimation methods for the patience time distribution.
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1. Introduction

1.1 The Motivation

The goal of statistics is to analyze data. In recent years, many datasets which need

to be analyzed are complicated. Complicated data structures may arise when handling

big data, i.e., when the number of explaining variables in the dataset is very large, or

when the number of observations is very large. Complicated data structures can also

arise in settings in which some of the observations are not complete. Specifically, exact

information may not be recorded due to missing data, censored data, or when only an

indicator whether an event happened or not at some point in time is given, where the last

type of data is referred to a current status data. Complicated data structures can be found

in biostatistics, bioinformatics, queuing systems, clinical trails, and many more. These

datasets need to be analyzed carefully, which results in the need to develop advanced

statistical tools to address the analysis challenges. Models that are common in analyzing

complicated data structures include machine-learning and nonparametric approaches.

In his seminal paper, Breiman (2001) describes two common cultures in statistical

modeling—the data-modeling culture and the algorithmic-modeling culture. These two

cultures are widely used by analysts of complicated datasets. One culture assumes that the

data are generated by a given stochastic data model; this culture is common in regression

and survival analysis. The other culture uses algorithmic models and treats the data

mechanism as unknown; this culture is common in classification. In the data-modeling

culture, the analysis starts with assuming a stochastic data model, with parameters of

unknown value. The values of the parameters are estimated from the data, and the

model is then used for explanation and prediction. In the algorithmic-modeling culture,

the analyst considers the data-generating mechanism as a black box and treats it as

unknown. Instead, the analyst looks for an algorithm, described by a function f(X), of

the explanatory variable X, which can predict well the response Y .

The algorithmic modeling culture is common when addressing classification problems.

Here, a classification problem is when there is a vector of explanatory variables X which
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1 Introduction

can be continuous, and a response variable Y which is categorical. When the response

can take only two values, the problem is referred to as a binary classification problem.

In this problem, the goal of the analyst is to use the observed data in order to construct

a function that will classify a new vector of explanatory variables X to one of the two

possible values of the response variable Y . The obtained function is called a classifier.

A well-known family of classifiers are the kernel-machines algorithms. Kernel-machine

algorithms were introduced by Vapnik (1998), who referred to these algorithms as support

vector machines. More general kernel machines are discussed in Steinwart and Christmann

(2008) and Hofmann et al. (2008). Kernel-machine classifiers can be implemented easily,

have strong generalization abilities, and converge, under some mild conditions, to the

optimal classifier (Steinwart and Christmann, 2008). Here, the optimal classifier, also

known as the Bayes rule, is the classifier that minimizes some asymptotic optimization

problems.

The test error of a given classifier is defined as the probability of missclassification,

i.e., the probability that the classifier fails to classify correctly. For example, consider a

dataset of patients that consists of explaining measurements such as weight, height, blood

pressure, and age, and a binary response variable that indicates whether the patient is

diagnosed with diabetes or not. Given such a dataset, the goal is to construct a classifier

that for any given profile, i.e., a set of the explaining variables, will result in a prediction

of the diagnosis of having diabetes or not. A missclassification occurs when the classifier

classifies a profile as diagnosed where the patient does not have diabetes, or when the

classifier classifies a profile as not diagnosed where the patient has diabetes. Since the

test error is defined as the probability of missclassification, a small test error indicated

that the classifier classifies well. Therefore, the test error is considered as an important

quantity in classification problems, and there is a strong interest in estimating correctly

the test error. A discussion of the problem appears in Chapter 2. Chapter 2 provides

a comprehensive analysis of how to construct confidence intervals for the test error in

kernel-machine algorithms.

So far, a classification problem was discussed that is typically handled using the

algorithmic-culture tools. We now move to discuss a survival analysis problem that is

typically handled using the data-modeling culture tools. Specifically, consider a setting in

which there is an interest of estimating the distribution of a time-to-event variable, but

this variable is not completely observed. For example, some of the observations might be

right censored. Here, right censoring means that some of the time-to-event observations

have only a lower bound on the event time. It is common to refer to this event as a

failure event and to its time as the failure time. In the standard right-censored setting,
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1.2 Confidence intervals for the test error

for each patient, one observes either the failure time or the censoring time. Another kind

of survival data format is left-censored data. For this type of data format, for some of the

observations, the failure time is not given, and instead only an upper bound is given.

We consider survival data that combine three types of observations: uncensored,

right-censored, and left-censored data. Our motivation example comes from the need to

estimate the patience of patients who arrive at an emergency department and wait for

treatment. Three categories of patients are observed: those who leave the system and

announce it, and thus their patience time is observed; those who get service and thus

their patience time is right-censored by the waiting time; and those who leave the system

without announcing it. For this third category, the patients’ absence is revealed only when

they are called to service, which is after they have already left; formally, their patience

time is left-censored. Chapter 3 proposes both a semiparametric and a nonparametric

novel estimators for the patience-time distribution, as well as theoretical and numerical

analysis of these estimators. This chapter also presents the analysis of our motivating

example using the two proposed estimators.

1.2 Confidence intervals for the test error

In Chapter 2 we study the properties of the test error for kernel machines in the setting of

binary classification. In a binary classification setting, one observes a dataset that consists

of multi-dimensional explanatory variables and a binary response. A classifier is a function

that labels a new vector of explanatory variables to one of the two response values. For a

given classifier, the test error is the probability of missclassification. Therefore, the test

error measures the classifier successes, and hence it is important to estimate its value.

Due to its structure, it is difficult to provide a point estimator for the test error; instead

it is common to construct a confidence interval for this quantity?.

More specifically, consider the following statistical classification problem where the

observed data consist of {(X1, Y1) , . . . , (Xn, Yn)} such that the explanatory variable X is

multi-dimensional and typically continuous, while the response variable Y gets the values

−1 and 1. A classifier f̂ is a function which for every explanatory variable X returns a real

value f̂(X), classified according to its sign. It follows that the event of missclassification is

{Y f̂(X) ≤ 0}. By definition, a kernel-machine classifier is the minimizer of a regularized

empirical risk over a reproducing kernel Hilbert space (RKHS) of functions. The size of

the RKHS affects whether the method is parametric or nonparametric. Finite-dimensional

functional spaces results in a parametric setting, whereas infinite-dimensional spaces re-

sults in a nonparametric setting. Here, we allow these kernel machines to be defined with
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1 Introduction

respect to an infinite-dimensional RKHS.

The test error of a classifier f̂ is the probability that the function missclassifies. For-

mally, it is defined as the expectation of the indicator 1{Y f̂(X) ≤ 0} given the sample

{(X1, Y1) , ..., (Xn, Yn)}. Estimation methods of the test error are usually based on resam-

pling techniques, such as leave-one-out or k-fold cross-validation. Previous works have

shown that test error estimators are plagued by bias and high variance across training sets

and consequently the test error is accepted to be a difficult quantity to estimate (Isaksson

et al., 2008; Zhang, 1995; Hastie et al., 2009). The reason for this problematic behavior

is that the test error is the expectation of the non-smooth function 1{Y f̂(X) ≤ 0}.
In Chapter 2 we propose two methods for constructing confidence intervals for the test

error in general infinite-dimensional RKHS settings. The idea is to replace the indicator

function 1{t ≤ 0} by smooth functions. For the first method we choose functions that

approximate 1{t ≤ 0} from above and below, such that their empirical mean over Y f̂(X)

converges with a root-n rate to Gaussian variables. This allows us to construct conser-

vative confidence intervals using both Gaussian approximation and empirical bootstrap.

While this construction is simple, and results in asymptotically conservative confidence

intervals, the length of these intervals may not converge to zero with sample size.

To overcome this problem, we propose a second method for constructing confidence

intervals. In this method, we replace the fixed functions that approximate 1{t ≤ 0} by

two sequences of functions that converge to the indicator function 1{t ≤ 0} from below

and from above. Based on the setting proposed by Hable (2012), and using empirical

process theory (Kosorok, 2008; van der Vaart, 2000), we are able to construct conservative

confidence intervals with length converging to zero, using both Gaussian approximation

and empirical bootstrap.

1.3 Self-reporting and screening

In Chapter 3 we study the estimation of failure time distribution where failure times

can be either observed directly, right-censored, or left-censored. The motivating example

is estimating the patience of patients who wait for treatment in an emergency depart-

ment (ED). Each patient has its (virtual) waiting time for service and patience time.

Here, the waiting time is the time passed until the patient is called to enter for treatment,

while the patience time is the time passed in the queue until the patient loses patience and

decides to quit the queue. Estimating the patience-time distribution is of importance, as

the decision of patients to leave the system before being served may have a strong effect

on their physical well-being.
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1.3 Self-reporting and screening

The scenario described above leads to three categories of patients. The first category

consists of patients who get service. For a patient in this category, the waiting time

is given while only a lower bound on patience time is given, namely the waiting time.

Therefore, in this category, the patience time is right-censored by the waiting time while

the waiting time is fully observed. The second category comprises those who leave the

system and announce it. For patients in this category, their patience time is given, while

their waiting time is known to exceed the patience time. Thus, their patience time is

observed while the waiting time is right-censored. The third category consists of patients

who leave the system without announcing it; their absence is hence revealed only when

they are called to service, which is after they have already left. In this case their waiting

time is observed, while only an upper bound on their patience time is given, i.e., it is

left-censored.

Summarizing, in the ED setting, the patience time is either exactly observed for the

second category; or right-censored for the first category; or left-censored for the third

category. Since the patience time may follow three types of observations, estimating it

is challenging. On the other hand, the waiting time is either exactly observed or right-

censored; hence, estimating it can be done using classical survival analysis methodology.

In Chapter 3 we propose novel parametric and nonparametric estimators for the dis-

tribution function of the patience time using this three-category survival data. We then

study their rates of convergence. The parametric estimator is based on both full and

partial likelihoods. We provide conditions under which the parametric estimator is a

linear asymptotic normal (LAN) estimator and converges to a normal distribution in a

root-n rate. The nonparametric estimator is based on nonparametric kernel estimators

for density functions and on a novel estimator of the cumulative probability function that

has some similarities to the Nelson–Aalen estimator (e.g., Klein and Moeschberger, 2013,

Chapter 4). We show, under some regularity conditions, that the nonparametric esti-

mator point-wise converges to the normal distribution. We study, using simulation, the

properties of both the parametric and nonparametric estimators. We then carry out a

case study that is based on data of patients waiting for treatment in an ED, in the U.S.

in 2008. We analyzed separately different severity levels. We conclude with a comparison

of the parametric and nonparametric estimators for the three different severity levels of

this dataset.
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CONFIDENCE INTERVALS FOR THE TEST ERROR IN A GENERAL KERNEL

MACHINE CLASSIFICATION
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In statistical learning, the successes of classifiers is commonly measured

by the test error which is the misclassification probability. Therefore, it is

of an interest to construct a high quality estimator for the test error. In this

paper we consider the test error of general kernel-machine classifiers. Infer-

ence for kernel-machine classifiers, and more specifically, for the test error

of these classifiers, is difficult since even the rate of convergence is unclear.

We propose confidence intervals which are asymptotically correct. The pro-

posed confidence intervals are constructed by two different approaches. The

first approach is based on converging to a normal distribution approximation

and the second is based on empirical bootstrap.

1. Introduction. Consider the following statistical classification problem. We observe

{(X1, Y1) , ..., (Xn, Yn)} such that the explanatory variable X is multidimensional and typically

continuous, while the response variable Y gets the values −1 and 1. A classifier f̂ is a function

wherein every explanatory variable X returns a real value f̂(X) which is classified according to

its sign. It follows that the event of misclassification is {Y f̂(X) ≤ 0}. In this work we consider

classifiers from the kernel-machine family which are a family of classification algorithms (Vapnik,

1998; Steinwart and Christmann, 2008). Kernel-machine classifiers can be implemented easily,

have a strong generalization ability, and converge, under some conditions, to the optimal classifier

(Steinwart and Christmann, 2008). By definition, a kernel-machine classifier is the minimizer of

a regularized empirical risk over a reproducing kernel Hilbert space (RKHS) of functions. The

size of the RKHS affects whether the method is parametric or nonparametric. Finite-dimensional

functional spaces results in a parametric setting whereas infinite-dimensional spaces results in a

Keywords and phrases: Classification, Kernel-machine classifier, Reproducing kernel Hilbert space, Empirical pro-

cesses, Confidence intervals, Gaussian process, Bootstrap
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nonparametric setting.

The test error of a classifier f̂ is the probability that the function misclassifies. Formally, it is de-

fined as the expectation of the indicator 1
{
Y f̂(X) ≤ 0

}
given the sample {(X1, Y1) , ..., (Xn, Yn)}.

Estimation methods of the test error are usually based on resampling techniques such as leave-one-

out or k-fold cross-validation. Efron (1983) suggested bootstrap estimates of the test error and later

refinements were given by Efron and Tibshirani (1995, 1997). There have been a number of simu-

lation studies comparing these approaches; some references include Efron (1983); Chernick et al.

(1985); Kohavi (1995); Krzanowski and Hand (1997). A nice survey of estimators is given by

Schiavo and Hand (2000). Previous works have shown that test error estimators are plagued by

bias and high variance across training sets and consequently the test error is accepted as a dif-

ficult quantity to estimate (Isaksson et al., 2008; Zhang, 1995; Hastie et al., 2009). The reason

for this problematic behavior is that the test error is the expectation of the non-smooth function

1
{
Y f̂(X) ≤ 0

}
.

Instead of point estimation, one can consider a confidence interval. Previous works on confi-

dence intervals for the test error considered only parametric settings. Laber and Murphy (2012)

propose confidence intervals for linear classifiers. Jiang et al. (2008) propose confidence intervals

for finite-dimensional RKHSs. Both use the fact that in their settings the derived classifiers have

the property that the empirical mean of 1
{
Y f̂(X) ≤ 0

}
converges with a root-n rate. In a gen-

eral infinite-dimensional RKHS, the empirical mean of 1
{
Y f̂(X) ≤ 0

}
may not converge with a

root-n rate and therefore similar techniques to those used by Laber and Murphy (2012) and Jiang

et al. (2008) cannot be applied.

In this work we propose two methods to construct confidence intervals for the test error for

general infinite-dimensional RKHS settings. The idea is to replace the indicator function 1{t ≤ 0}

by smooth functions h− and h+ such that h−(t) ≤ 1{t ≤ 0} ≤ h+(t). For the first method, we

choose h− and h+ such that the empirical mean of h−(Y f̂(X)) and h+(Y f̂(X)) converge with

a root-n rate to Gaussian variables. This allows us to construct conservative confidence intervals

using both Gaussian approximation and empirical bootstrap. While this construction is simple, and

results in asymptotically conservative confidence intervals, the length of these confidence intervals

may not converge to zero when the sample size grows.

To overcome this problem, we propose a second method for constructing confidence intervals.

In this method, we replace the fixed functions h− and h+ with sequences of functions {h−n } and
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{h+n } such that {h−n } is a pointwise increasing sequence that converges to the indicator function

1t≤0 from below, and {h+n } is a pointwise decreasing sequence defined similarly. However, since

the classifier f̂ and the sequences {h−n } and {h+n } are changing with n, it is challenging to find

conditions ensuring that the empirical means of h−n (Y f̂(X)) and h+n (Y f̂(X)) converge with a

root-n rate to Gaussian variables. Based on the setting proposed by Hable (2012), and using em-

pirical process theory (Kosorok, 2008; van der Vaart, 2000), we develop conditions which ensure

such a convergence. These conditions enable the construction of conservative confidence intervals

with a length converging to zero, using both Gaussian approximation and empirical bootstrap.

The paper is organized as follows. In Section 2 we present kernel-machines classifiers. Confi-

dence intervals based on the first method are presented in Section 3. Confidence intervals based

on the second method are presented in Section 4. Simulation studies are given in Section 5. Con-

cluding remarks are given in Section 6.

2. Preliminaries. Assume that the observed data D := {(X1, Y1) , ..., (Xn, Yn)}, are i.i.d.

following a common distribution P where the explaining variable X ∈ X , X ⊂ Rd is compact,

the response Y gets the values {−1, 1}. The data set D is used in order to construct a classifier

which is a function f̂ : X 7−→ R, such that f̂(x) classifies a new explanatory value according to

signf̂(x) where signf̂(x) = 1 if f̂(x) ≥ 0. In this case x is classified to 1 and signf̂(x) = −1 if

f̂(x) < 0; in this case x is classified to −1.

The test error of a classifier f̂ is defined by τ(f̂) ≡ P1
{

signf̂(X) 6= Y
}

, where, for a gen-

eral measurable function g : X × {−1, 1} 7−→ R, Pg(X,Y ) is the expectation of the function

g, i.e., Pg(X,Y ) ≡
∫
g(x, y)dP (x, y). Hence, the test error is the probability of misclassifi-

cation and therefore a small test error indicates a good classifier. We assume that Pr
(
f̂(X) =

0
)

= 0; therefore the event of misclassification is
{
Y f̂(X) ≤ 0

}
and the test error is τ(f̂) =

P1
{
Y f̂(X) ≤ 0

}
.

The kernel-machine classifier belongs to an RKHS. The RKHS H is a space of functions from

X to R and is defined by a kernel function k : X × X 7−→ R (Steinwart and Christmann, 2008,

Chapter 4). Under some conditions, an RKHS is dense in the space C(X ) which is the space of all

the continuous functions from X to R. A loss function is a function L : {−1, 1} × R→ [0,∞).

The risk of a given function f ∈ H with respect to a loss function L is defined by R(f) ≡

PL(Y, f(X)). The empirical risk is PnL(Y, f(X)), where Pn is the empirical measure, i.e., for a

10



measurable function g : X × {−1, 1} 7−→ R,

Png(X,Y ) ≡ 1

n

n∑

i=1

g(Xi, Yi).

The kernel-machine classifier is the minimizer of the regularized empirical risk

f̂D,λn ≡ argmin
f∈H

{
PnL(Y, f(X)) + λn‖f‖2H

}
.(1)

The first term in (1) is the empirical risk and the second term penalizes the complexity of f

in order to avoid overfitting. The regularization parameter λn is a positive real number usually

chosen by cross validation.

3. Naive Confidence Intervals.

3.1. Normal approximation. For a general measurable function g : X × {−1, 1} 7−→ R, de-

note the following

Gng (X,Y ) ≡ √n (Pn − P ) g(X,Y ).

The central limit theorem (CLT) ensures that Gng(X,Y )  N(0, Vg), where denotes con-

vergence in distribution and Vg is the variance of g(X,Y ). This convergence allows a construction

of a CI for the unknown deterministic term Pg(X,Y ).

More precisely,

Png(X,Y )−

√
V̂g
n
Z1−α

2
, Png(X,Y ) +

√
V̂g
n
Z1−α

2




is a confidence interval for Pg(X,Y ) with an asymptotic confidence level of 1 − α, where

V̂g ≡ Png2(X,Y )− P2
ng(X,Y ) and Z1−α

2
is the 1 − α

2 quantile of the standard normal distri-

bution.

When ĝn : X × {−1, 1} 7−→ R is a function that depends on the sampled data, the CLT

does not hold. Hence, the asymptotic convergence of Gnĝn(X,Y ) to a normal distribution may

not hold. Here in the definition of Gnĝn(X,Y ) the term P ĝn(X,Y ) is defined as P ĝn(X,Y ) ≡
∫
ĝn(x, y)dP (x, y). Our interest is to construct a CI for the test error τ(f̂D,λn) = P1

{
Y f̂D,λn(X) ≤ 0

}
.

Note that 1
{
Y f̂D,λn(X) ≤ 0

}
depends on the sampled data, so according to the last comment,

the standard CLT may not hold.

The following theorem is from Bolthausen et al. (2002, Theorem 6.15, Chapter 6.4) and gives

conditions in which a convergence of Gnĝn(X,Y ) to a normal distribution holds where ĝn is a

given function that depends on the sampled data.
11



LEMMA 1. Let ĝn : X 7−→ R be a function that depends on the sampled data such that

i) Pr(ĝn ∈ F)→ 1 for a P -Donsker class F

ii) P (ĝn − g0)2 → 0 in probability for some g0 ∈ L2(P )

Then Gn(ĝn − g0)(X,Y ) 0.

The proof is in Bolthausen et al. (2002, Theorem 6.15, Chapter 6.4)

This lemma gives conditions in which Gn(ĝn − g0)(X,Y ) 0. Since

Gnĝn(X,Y ) = Gn(ĝn − g0)(X,Y ) + Gng0(X,Y )

and since by the CLT Gng0(X,Y )  N(0, Vg0), by the Slutsky theorem (Kosorok, 2008, Theo-

rem 7.15) it follows that Gnĝn  N(0, Vg0).

Our interest is in constructing a CI to the quantity P1
{
Y f̂D,λn(X) ≤ 0

}
. Since the functional

1t≤0 is not continuous the first condition in Lemma 1 does not hold. In order to apply Lemma 1 to

our setting, we need to replace the function 1t≤0 by a smooth function.

The following theorem is based on Lemma 1.

THEOREM 1. Consider a setting in which λn → λ0 > 0; then for any given function h : R 7→

R which is a Lipschitz continuous and bounded function,

Gnh(f̂D,λn(X)Y ) N(0, Vh(Y f∗(X))),(2)

where

f∗ = argmin
f∈H

PL(Y, f(X)) + λ0‖f‖2H.(3)

The proof of the theorem is based on the following lemmas

LEMMA 2. Let B1(H) be the open unit ball of the RKHS H. Then, there exists a constant

c > 0 such that the classifier f̂ belongs to Bc(H) ≡ c ·B1(H) with probability 1.

PROOF. The SVM classifier is defined as

f̂D,λn := argmin
f∈H

{PnL(Y, f(X)) + λn‖f‖2H}.

Therefore,

(4) PnL(Y, f̂D,λn(X)) + λn‖f̂D,λn‖2H ≤ PnL(Y, 0) + λn‖0‖2H.
12



From the inequality in (4) we have

λn‖f̂D,λn‖2H ≤ PnL(Y, f̂D,λn(X)) + λn‖f̂D,λn‖2H ≤ PnL(Y, 0) + λn‖0‖2H = PnL(Y, 0) ≤M

where M = min{L(−1, 0), L(1, 0)}. It follows from the inequalities in (4) that

‖f̂D,λn‖H ≤
√
M√
λn

. Therefore, for m = inf{λ0, λ1, λ2, ...} then ‖f̂D,λn‖ ≤
√

M
m . Hence, for any

c >
√

M
m , we obtain f̂D,λn ∈ Bc(H) as desired.

LEMMA 3. The function f̂D,λn converges weakly to f∗ where f̂D,λn and f∗ are defined in 1

and 3 respectively.

PROOF. Let F ⊆ H be a closed ball. Let Mn : F 7−→ R be defined by

Mn(f) := −(PnL(Y, f(X)) + λn‖f‖2H).

By the definition of the SVM classifier in 1 we have that Mn(f̂D,λn) ≥ supf∈FMn(f).

For M : F 7−→ R defined as M(f) := −(PL(Y, f(X)) + λ0‖f‖2H) it follows that f∗ is

the unique maximizer of M . Since F is a closed ball, the sequence f̂D,λn together with f∗ are

uniformly tight. Note that

Mn(f)−M(f) = (P − Pn)L(Y, f(X)) + (λ0 − λn)‖f‖2H.

Since F is a closed ball and λn → λ0, supf∈F (λ0 − λn)‖f‖2H → 0.

SinceF is a P -Donsker class (Kosorok, 2008) and L is a convex function and thus a continuous

function, L ◦ F = {L ◦ f |f ∈ F} is a Glivenko-Cantelli class (Kosorok, 2008, Corollary 9.27).

Therefore supf∈F | (P − Pn)L(Y, f(X)) |→ 0. It follows that Mn  M ,from the Argmax

theorem (Kosorok, 2008, Theorem 14.1), f̂D,λn  f∗ as desired.

LEMMA 4. If h is Lipschitz continuous and bounded, then P 2
(
h(f̂D,λn)− h(f∗)

)
→ 0.

PROOF. Because h is continuous, then due to Lemma 3 and the Slutsky theorem, we have that

h(f̂D,λn) − h(f∗) → 0 in probability; since h is bounded, then P 2
(
h(f̂D,λn) − h(f∗)

)
→ 0, by

the bounded convergence theorem, as desired

LEMMA 5. If h is Lipschitz continuous and bounded, then h(f̂D,λn) − h(f∗) belongs to a

P -Donsker class.
13



PROOF. According to Steinwart and Christmann (2008, Corollary 4.36) and Kosorok (2008,

Theorem 9.19) B1(H), a closed ball in an RKHS is a P -Donsker class and since a composition of

a Lipschitz continuous and bounded function with a P -Donsker is a P -Donsker class (Kosorok,

2008, Corollary 9.32), then h(f̂D,λn) belongs to a P -Donsker class. Since h(f∗) is deterministic,

then h(f̂D,λn)− h(f∗) belongs to a P -Donsker class, as desired

Lemmas 4 and 5 show that the two conditions in Lemma 1 hold. Therefore, we conclude that

Gn[h(f̂D,λn(X))− h(f∗(X))] 0.

Similar arguments show that

Gn[h(−f̂D,λn(X))− h(−f∗(X))] 0.

From this we conclude that

Gn[h(Y f̂D,λn(X))− h(Y f∗(X))] 0

which completes the proof of Theorem 1.

From Theorem 1 we have the following conclusion

CONCLUSION 2. Let f̂D,λn be a kernel classifier over an RKHS and let h : R 7−→ R be a

Lipschitz continuous and bounded function. Then

Pr

(
Ph
(
f̂D,λn(X)Y

)
< Pnh

(
f̂D,λn(X)Y

)
−
Z1−α

2√
n

√
V̂h

)
=
α

2
+ o(1)(5)

Pr

(
Ph
(
f̂D,λn(X)Y

)
> Pnh

(
f̂D,λn(X)Y

)
+
Z1−α

2√
n

√
V̂h

)
=
α

2
+ o(1)(6)

where Z1−α
2

is the 1− α
2 quantile of the standard normal distribution.

Our interest is a CI to the quantity P1{Y f̂D,λn (X)≤0}. Since the functional 1t≤0 is not continu-

ous, a construction for P1{Y f̂D,λn (X)≤0}, as stated in Conclusion 2, does not hold. Instead, take

any two functions h+, h− : R 7→ R which are Lipschitz continuous and bounded with the property

that

h−(t) ≤ 1{t≤0} ≤ h+(t).

Then, by definition,

Ph−
(
f̂D,λn(X)Y

)
≤ P1{Y f̂D,λn (X)≤0} ≤ Ph

+
(
f̂D,λn(X)Y

)
.(7)

14



By Conclusion 2

(8)


Pnh−

(
f̂D,λn(X)Y

)
−

√
V̂h−

n
Z1−α

2
, Pnh+

(
f̂D,λn(X)Y

)
+

√
V̂h+

n
Z1−α

2




is a conservative CI for the test error with an asymptotic confidence level of 1− α.

The length of the CI given in (15) is

Pn
[
h+
(
f̂D,λn(X)Y

)
− h−

(
f̂D,λn(X)Y

)]
+
Z1−α

2√
n

(√
V̂h+ −

√
V̂h−

)

which converges to P
[
h+
(
f∗(X)Y

)
− h−

(
f∗(X)Y

)]
. Therefore, the length of the CI given in

(15) does not necessarily converge to zero.

3.2. Empirical Bootstrap. Another common method to construct a CI for a deterministic

quantity Pg is by using the empirical bootstrap process. The empirical bootstrap process, indexed

by g, is defined as follows

G(b)
n g(X,Y ) =

√
n
(
P(b)
n − Pn

)
g(X,Y ),

where, for a measurable function g : X ×{−1, 1} 7−→ R, the empirical bootstrap mean is defined

as

P(b)
n g(Y,X) =

1

n

n∑

i=1

Wnig(Xi, Yi)

where

(
Wn1,Wn2, ...,Wnn

)
∼ Multinomial

(
n;

1

n
,

1

n
, ...,

1

n

)
.

According to (Kosorok, 2008, theorem 10.4), G(b)
n g(X,Y ) and Gng(X,Y ) converge to the

same limit. Therefore, let p̂g,q be a consistent estimator to the q percentile of G(b)
n g(X,Y ). Then

(9)

[
Png(Y,X)−

p̂g,1−α
2√

n
, Png(Y,X)−

p̂g,α
2√
n

]
.

is a CI to the quantity Pg with an asymptotic confidence level of 1 − α. As seen in Chapter

3.1, since the test error is a random quantity, the CI given in (9) does not necessarily hold when

plugging in a random function ĝn. The next lemma gives a condition in which a plugging in a

random function ĝ to (9) results with a CI to P ĝ in a confidence level of 1− α.

LEMMA 6. Let ĝn : X 7−→ R be a function that depends on the sampled data such that
15



i) Pr(ĝn ∈ F)→ 1 for a P -Donsker class F

ii) P (ĝn − g0)2 → 0 in probability for some g0 ∈ L2(P )

Then Gb
n(ĝn − g0)(X,Y ) 0.

The proof of this lemma is similar to that of Lemma 1.

By Lemma 6 we have that

(10)

[
Pnh−

(
f̂D,λn(X)Y

)
−
p̂h−,1−α

2√
n

, Pnh+
(
f̂D,λn(X)Y

)
+
p̂h+,α

2√
n

]

is a conservative CI for the test error where p̂h−,1−α
2

is the 1− α
2 quantile of G(b)

n h−(Y f̂D,λn(X))

and p̂h+,α
2

is the α
2 quantile of G(b)

n h+(Y f̂D,λn(X)).

4. Adaptive Confidence Intervals. The aim of this section is to construct confidence inter-

vals for the kernel classifier’s test error with asymptotic (1− α)100% confidence level. However,

such a construction is challenging since the test error is an expectation of the non-continuous func-

tion 1{t ≤ 0} where t = Y f̂D,λn(X). The idea is to replace the construction of the naive method,

given in Section 3, by taking sequences of smooth functions that converge to the function 1{t ≤ 0}

as the sample size grows. In order to keep a P -Donsker structure, delicate arguments are given,

discussing the assumptions on the smoothness and the rate of convergence of the functions in the

sequence. Let {h−m}∞m=1 and {h+m}∞m=1 be sequences of functions from R to R with the following

properties:

i) For all t ∈ R, h−m(t) ≤ 1{t ≤ 0} ≤ h+m(t) .

ii) For all t ∈ R, both h−m(t) and h+m(t) converge pointwise to the function 1{t ≤ 0} asm→∞.

Let {h◦m}∞m=1 be a general sequence of functions which satisfies h◦m(t) → 1{t ≤ 0} as m →

∞, specifically h◦ can be either h− or h+. By equation (5), for any fixed m,

Gnh
◦
m

(
Y f̂D,λn(X)

)
 

n→∞
N
(
0, Vh◦m(Y f∗(X))

)
.(11)

By the dominant convergence theorem,

N
(
0, Vh◦m (Y f∗(X))

)
 

m→∞
N (0, P1{Y f∗(X) ≤ 0}(1− P1{Y f∗(X)} ≤ 0)) .(12)

Therefore, we would like to find a sequence {mn}∞n=1 with mn →∞, such that

Gnh
◦
mn

(
Y f̂D,λn(X)

)
 

n→∞
N (0, P1{Y f∗(X) ≤ 0}(1− P1{Y f∗(X)} ≤ 0)) .(13)
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We assume the following

(A1) The kernel k has d
2 + 1 derivatives.

(A2) The loss function is a convex locally-Lipschitz continuous function satisfying L(y, 0) ≤ 1.

(A3) X ⊆ Rd is bounded and convex with nonempty interior.

(A4) λn → λ0 > 0.

In the following, we present conditions on the sequence {mn}∞n=1 which ensures that both

{h−mn}∞n=1 and {h+mn}∞n=1 satisfy (13). Using this result we will be able to prove the following

theorem.

THEOREM 3. Let mn = o(nε), where 0 < ε < 1
d+3 , s(d) = dd+3

4 e+ 1, and let Assumptions

(A1)-(A4) hold. Define the following functions from R to R,

g(t) ≡ 1

2
exp

(
− t2s(d)

1− t2s(d)

)
1{|t| < 1},

h(t) ≡





g(t) if t ≥ 0,

1− g(t) if t < 0,
(14)

h−mn(t) ≡ h(mnt+ 1) and h+mn(t) ≡ h(mnt− 1). Then, the normal-approximation-based CI

(15)


Pnh−mn

(
f̂D,λn(X)Y

)
−

√
V̂h−mn
n

Z1−α
2
, Pnh+mn

(
f̂D,λn(X)Y

)
+

√
V̂h+mn
n

Z1−α
2




and the empirical-bootstrap-based CI

(16)

[
Pnh−mn

(
f̂D,λn(X)Y

)
−
p̂h−mn ,1−α2√

n
, Pnh+mn

(
f̂D,λn(X)Y

)
+
p̂h+mn ,

α
2√

n

]

are both confidence intervals for the test error with an asymptotic confidence level of (1 −

α)100%.

The proof of the theorem is based on the following lemmas. First we prove the theorem for the

confidence interval in (15).

LEMMA 7. Let assumptions (A1)-(A4) hold. Let B1(H) be the open unit ball of the RKHSH.

Then, for any 0 < ε < 1
2

Pr
(
n

1
2
−ε(f̂D,λ − f∗) ∈ B1(H)

)
−→
n→∞

1.(17)
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PROOF. By the proof of Theorem 6.24 in Steinwart and Christmann (2008), for any τ > 0,

Pr

(
‖n 1

2
−ε(f̂D,λ − f∗)‖H≥ λ−1|L|

λ−
1
2 ,1
n

1
2
−ε(
√

2τ

n
+

√
1

n
+

4τ

3n

)
)
≤ e−τ .(18)

Set τ = τn = nε; then the inequality given in (18) is

Pr
(
‖n 1

2
−ε(f̂D,λ − f∗)‖H≥ an

)
≤ bn,(19)

where an = λ−1|L|
λ−

1
2 ,1

(
√

2n−
ε
2 +n−ε+ 4

3n
− 1

2 ) and bn = e−n
ε
. Note that an → 0 and bn → 0;

therefore by (19), Pr
(
‖n 1

2
−ε(f̂D,λ − f∗)‖H≥ 1

)
−→ 0. Hence,

Pr
(
n

1
2
−ε(f̂D,λ − f) ∈ B1(H)

)
−→ 1, as desired.

We shall define a class of bounded smooth functions on X ⊆ Rd as follows. For any vector

k = (k1, ..., kd) of non-negative integers, define the differential operator Dk ≡ ∂|k|

(∂x
k1
1 ,...,∂x

kd
d )

,

where |k| ≡ k1 + ...+ kd. For any x ∈ R, let bxc be the largest integer j ≤ x. Let f : X 7→ R

and α > 0; define the norm

‖f‖α := max
k:|k|≤bαc

sup
x∈X
|Dkf(x)|+ max

k:|k|=bαc
sup

x,x′∈X ,x 6=x′
|Dkf(x)−Dkf(x′)|
‖x− x′‖α−bαc .(20)

When k = 0 we set Dkf = f . Now, let CαM (X ) be the set of all continuous functions f : X 7→ R

with ‖f‖α ≤ M . By Kosorok (2008, Theorem 9.19), if X ⊆ Rd is bounded and convex with a

nonempty interior and α > d
2 , then the class of functions CαM (X ) is a P -Donsker class.

Let C(X ) be the class of all the continuous functions from X to R. For a class of functions

F ⊆ C(X ), and differential function h : R 7→ R, and given constants m > 1, s > 1, and c ∈ R,

define Hm,s,c,h : F × F 7→ C(X ) as

Hm,s,c,h(g, f) :=





h(mf+c)−h(mg+c)
ms+1(f−g) f 6= g,

h(1)(mf+c)
ms f = g.

LEMMA 8. Let h : R 7→ R be such that h has s+1 derivatives that are all uniformly bounded

by a constant M , and let F ⊆ CsM (X ). Then, there is a constant M̃ , independent of m, such that

the class of functions

HF ,s,c,h ≡ {Hm,s,c,h(g, f)|m > 1, f, g ∈ F}

is a sub-class of Cs
M̃

(X ).

PROOF. Clearly, since a change in scale does not affect the boundaries of a function, it is

sufficient to prove the lemma where c = 0, i.e., for HF ,s,0,h. We will prove the case in which F
18



is a class of functions from X ⊆ R to R, similar arguments hold when X ⊆ Rd. For any integer

j ≥ 0, we use the notation h(j)(y) = dj

dyj
h(y) and f (j)(x) = dj

dxj
f(x), g(j)(x) = dj

dxj
g(x). Note

that

m

∫ 1

0
h(1)(tmf + (1− t)mg)dt =

∫ 1

0

d

dt

h(tmf + (1− t)mg)

f − g dt =
h(mf)− h(mg)

f − g .

Hence, the l-th derivative of h(mf)−h(mg)f−g is by the Faa di Bruno formula

dl

dxl
h(mf)− h(mg)

f − g

= m

∫ 1

0

dl

dxl
h(1)(tmf + (1− t)mg)dt

= m

∫ 1

0
l!
∑( l∏

j=1

nj !(j!)
nj
)−1

h(1+n1+···nl)(tmf + (1− t)mg
) l∏

j=1

[tmf (j) + (1− t)mg(j)]njdt

= m

∫ 1

0
l!
∑( l∏

j=1

nj !(j!)
nj
)−1

h(1+n1+···nl)(tmf + (1− t)mg
) l∏

j=1

[tf (j) + (1− t)g(j)]njmnjdt

= m

∫ 1

0
l!
∑( l∏

j=1

nj !(j!)
nj
)−1

mn1+···nlh(1+n1+···nl)(tmf + (1− t)mg
) l∏

j=1

[tf (j) + (1− t)g(j)]njdt

=

∫ 1

0
l!
∑( l∏

j=1

nj !(j!)
nj
)−1

m1+n1+···nlh(1+n1+···nl)(tmf + (1− t)mg
) l∏

j=1

[tf (j) + (1− t)g(j)]njdt

where the sum is taken over all l-tuples of non-negative integers (n1, n2, ..., nl) satisfying the

constraint 1 · n1 + 2 · n2 + · · · + l · nl = l under this constraint n1 + n2 + · · ·nl ≤ l. Therefore,
∣∣∣ dldxl

h(mf)−h(mg)
f−g

∣∣∣ ≤ ml+1M l+1l!
∑

(
∏l
j=1 nj !(j!)

nj )−1. Define

M̃ = max
1≤l≤s



M

l+1l!
∑( l∏

j=1

nj !(j!)
nj
)−1


 .

Then, for any 1 ≤ l ≤ s,
∣∣∣∣
dl

dxl
h(mf)− h(mg)

ms+1(f − g)

∣∣∣∣ ≤ M̃.

Hence,

HF ,s,0,h ≡ {Hm,s,0,h(g, f)|m > 1, f, g ∈ F}

is a sub-class of Cs
M̃

(X ). Therefore, for any c ∈ R,

HF ,s,c,h ≡ {Hm,s,c,h(g, f)|m > 1, f, g ∈ F}

is a sub-class of Cs
M̃

(X ) as desired
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LEMMA 9. For any x ∈ R, let dxe be the smallest integer j ≥ x. Let Assumptions (A1)-(A3)

hold, and assume that h◦ has dd+3
2 e derivatives all bounded by constant M . Let mn = n

1
d+3
−ε,

where 0 < ε < 1
d+3 . Then, for any constant c, the random function h◦(mnf̂ + c)−h◦(mnf

∗+ c)

belongs to a P -Donsker class with probability converging to 1.

PROOF. Write

h◦(mnf̂)− h◦(mnf
∗) =

h◦(mnf̂ + c)− h◦(mnf
∗ + c)

ms+1
n (f̂ − f∗)

·ms+1
n (f̂ − f∗) ≡ Dn,mn · En,mn ,

(21)

where s = d+1
2 . By definition and by Lemma 7, the termDn,mn ≡ h◦(mnf̂+c)−h◦(mnf∗+c)

ms+1
n (f̂−f∗) belongs

to functions class HF ,s,h where F = Bc(H). According to Steinwart and Christmann (2008,

Corollary 4.36), there exists a bound M such Bc(H) belongs to CsM (X ). Hence, by Lemma 8,

there exists a bound M̃ such that the function classHBc(H),s,h is contained in Cs
M̃

(X ). Since that

s = d+1
2 > d

2 , by Kosorok (2008, Theorem 9.19), we have that Cs
M̃

(X ) is a P -Donsker class. The

term En,mn equals ms+1
n (f̂ − f∗), since

ms+1
n = m

d+1
2

+1
n = m

d+3
2

n = (n
1
d+3
−ε)

d+3
2 = n

1
2
−ε′

where ε′ ≡ d+3
2 ε. Since 0 < ε < 1

d+3 we have 0 < ε′ < 1
2 . Hence, according to Lemma 7, En,mn

belongs toB1(H) with probability converging to 1 which is a P -Donsker class as discussed before.

By Kosorok (2008, Corollary 9.32) a product of two uniformly bounded P -Donsker classes is a

P -Donsker class, and hence the random function

h◦(mnf̂ + c)− h◦(mnf
∗ + c)

belongs to a P -Donsker class with probability converging to 1 as desired.

LEMMA 10. Let {h◦mn}∞n=1 be a sequence of functions which satisfies h◦mn(t) → 1{t ≤ 0}

as n→∞. Then the convergence in (13) occurs if and only if

An,mn ≡ Gn

(
h◦mn(Y f̂D,λn(X))− h◦mn(Y f∗(X))

)
 0.(22)
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PROOF. Note that

Gn

(
h◦mn(Y f̂D,λn(X)

)
=Gn

(
h◦mn(Y f̂D,λn(X)− h◦mn(Y f∗(X))

)

+ Gn

(
h◦mn(Y f∗(X)− 1{(Y f∗(X)) < 0}

)

+ Gn1{(Y f∗(X)) < 0}

≡An,mn +Bn,mn + Cn .

Clearly,

Cn  N
(
0, P1{Y f∗(X) ≤ 0}(1− P1{Y f∗(X)} ≤ 0)

)
.(23)

Since f∗ is a deterministic function, then by the dominant convergence theorem,Bn,mn 0. There-

fore (13) holds if and only if An,mn  n→∞ 0.

LEMMA 11. Let Assumptions (A1)-(A3) hold, and let mn = n
1
d+3
−ε where 0 < ε < 1

d+3 . Let

h◦mn(t) = h◦(mnt+ c), where c is some constant, such that

lim
n→∞

h◦(mnt) ≡





1 if t > 0,

−1 if t < 0

and h◦ have dd+3
2 e derivatives, all bounded by a constant M . Then,

Gn

(
h◦(mnY f̂D,λn(X)) + c) N (0, P1{Y f∗(X) ≤ 0}(1− P1{Y f∗(X)} ≤ 0)) .(24)

PROOF. We will prove that

Gn

(
h◦(mnf̂D,λn(X) + c) N (0, P1{f∗(X) ≤ 0}(1− P1{f∗(X)} ≤ 0)) .(25)

Similar arguments hold when Y = −1. By Lemma 10, it is sufficient to prove that

Gn

(
h◦(mnf̂D,λn(X) + c)− h◦(mnf

∗(X) + c)
)
 0.(26)

To prove the convergence in 26 it is sufficient to show that the conditions in Lemma 1 hold.

Clearly, since h◦ is bounded and h◦(mnf̂D,λn(X) + c)−h◦(mnf
∗(X) + c) 0 then the second

condition of Lemma 1 holds. By Lemma 9, also the first condition of Lemma 1 holds. Conse-

quently,

Gn

(
h◦(mnY f̂D,λn(X) + c) N (0, P1{Y f∗(X) ≤ 0}(1− P1{Y f∗(X)} ≤ 0))(27)

as desired.
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LEMMA 12. Let f(t) = exp ( −t
2s

1−t2s )1{|t| < 1}. Then, for any 1 ≤ l ≤ 2s− 1

lim
t→−1

f (l)(t) = lim
t→1

f (l)(t) = f (l)(0) = 0.

PROOF. For any function of the form exp(r(t)), we have by the Faa di Bruno formula:

dl

dtl
exp(r(t)) = exp(r(t))

∑ l!
∏l
j=1 nj !j!

nj

l∏

j=1

(r(j)(t))nj(28)

where the sum is taken over all l-tuples of non-negative integers (n1, n2, ..., nl) satisfying the

constraint 1 · n1 + 2 · n2 + · · · + l · nl = l.

By its definition f(t) = 1
2 exp(r(t))1{|t| < 1} where r(t) = −t2s

1−t2s . Therefore, by (28)

dl

dtl
g(t) =

dl

dtl
1

2
exp(r(t)) =

1

2
exp(r(t))

∑ l!
∏l
j=1 nj !j!

nj

l∏

j=1

(r(j)(t))nj1{|t| < 1}(29)

where the sum is taken over all l-tuples of non-negative integers (n1, n2, ..., nl) satisfying the

constraint 1·n1+2·n2+· · ·+l·nl = l. Recall that r(t) = −t2s
1−t2s and note that for any 1 ≤ l ≤ 2s−1,

we have (t2s)(l) = t2s−l
∏l−1
j=0(2s−j). Then, by elementary derivative rules it follows that for any

1 ≤ l ≤ 2s−1, one can write r(l)(t) = pl(t)
(1−t2s)l where pl is a polynomial satisfying pl(0) = 0, and

thus g(l)(0) = 0. On the other hand, r(l)(t) = pl(t)
(1−t2s)l = pl(t)[

−r(t)
t2s

]l; clearly lim
t→1−

exp r(t) = 0

and lim
t→−1+

exp r(t) = 0. Therefore, lim
t→1−

rl(t) exp r(t) = 0 and lim
t→−1+

rl(t) exp r(t) = 0 which

yields that lim
t→−1

f (l)(t) = lim
t→1

f (l)(t) = 0, as desired.

LEMMA 13. The function h defined in (14) satisfies the following properties

(i)

lim
n→∞

h(mnt) ≡





1 if t > 0,

−1 if t < 0.

(ii) h has dd+3
2 e derivatives all bounded by a constant M .

PROOF. (i) By definition

g(t) ≡ 1

2
exp

(
− t2s(d)

1− t2s(d)

)
1{|t| < 1},

h(t) ≡





g(t) if t ≥ 0,

1− g(t) if t < 0.
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For any {mn}∞n=1 with mn → ∞, we have that for all t 6= 0, lim
n→∞

g(mnt) = 0. Therefore,

for any t > 0, lim
n→∞

h(mnt) = lim
n→∞

g(mnt) = 0, and for any t < 0, lim
n→∞

h(mnt) =

1− lim
n→∞

g(mnt) = 1.

(ii) Clearly, by (28), all the derivatives of the function g are bounded. Using again (28), we have

that the limit at zero for all the dd+3
2 e is the same for both g and 1− g, which concludes the

proof.

The proof of Theorem 3 for the confidence interval in (15) is now followed by defining h−(mnt) =

h(mnt+ 1) and h+(mnt) = h(mnt− 1) and applying Lemmas 11 and 13. The proof for the em-

pirical bootstrap CI which is presented in (16) follows similarly using Lemmas 9 and 6.

5. Empirical study. In this section we check the performance of the naive and adaptive con-

fidence intervals discussed in Sections 3 and 4, respectively. We checked three different classifi-

cation settings. For each setting, sample sizes of 100, 200, 400, and 800 were considered. Both

normal approximation and empirical bootstrap CIs with a confidence level of 95% were calculated.

We also approximated the true test error of a given classifier by constructing a new independent

data of 10, 000 observations. We then calculated the empirical mean of misclassification. For each

setting and sample size, we repeated the simulation 400 times. Each empirical bootstrap CI was

calculated with 800 bootstrap resamples. In our simulated settings we used the square loss function

L(y, t) = (y − t)2 and a Gaussian kernel.

The data generating mechanism for the three settings includes a vector of covariates X =

(X1, X2, ..., Xd) whereXj ∼ Uniform(0, 5) are i.i.d, and noise ε ∼ N(0, 1) which is independent

of the vector X . The response vector in the first setting is similar to that of Laber and Murphy

(2012) and is given by Y = sign(X2 − 4
25X

2
1 − 1 + 1

2ε), The distribution of the response in the

second setting is

Y = sign(X1 − 2.3X2
2 + 1.25X3

3 +X4X5 − 1.5X3
6 +X7/X8 + 0.3ε) .

Finally, the distribution of the response in the third setting is

Y = sign(X1 − 2X2
2 + 0.8X3

3 + 2X4X5 −X3
6 + 0.6ε) .

Table 1 shows the resulting coverage of this study. The results are for using the naive CIs and

adaptive CIs with a confidence level of 95%; each method was checked on the naive normal and
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TABLE 1
The coverage of the four methods for Settings 1-3.

Setting 1
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap

100 0.98 0.9775 0.97 0.965
200 0.9925 0.9875 0.9675 0.965
400 0.985 0.985 0.9625 0.965
800 0.98 0.975 0.96 0.9575

Setting 2
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap

100 0.995 0.995 0.975 0.9725
200 0.9975 0.995 0.955 0.9475
400 1 1 0.965 0.9625
800 1 1 0.955 0.955

Setting 3
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap

100 0.99 0.99 0.955 0.95
200 0.9975 0.9975 0.955 0.9475
400 1 0.9975 0.96 0.955
800 1 1 0.9525 0.9475

naive bootstrap methods along with the adaptive normal and adaptive bootstrap methods. Figure 1

shows the length of CIs using all four methods.

FIG 1. Boxplots of the length of the confidence intervals of Settings 1-3.

Motivated by the empirical study given in Laber and Murphy (2012), we evaluate the proposed

methodology on four datasets taken from the UCI machine learning repository1. For each of the

datasets the CIs were constructed for three different sample sizes 30, 100, and 250. For each

dataset, and each sample size, a random sample from the original dataset was drawn. A classifier

was constructed based on the drawn sampled data. Normal approximation and empirical bootstrap

CIs with a confidence level of 95% were calculated using both the naive and adaptive approaches.
1www.ics.uci.edu/ mlearn/MLRepository.html
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TABLE 2
The coverage of the four methods for the datasets Heart, Ion, Liver, and Spam.

Heart
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap
30 0.975 0.9675 0.945 0.945

100 0.9625 0.955 0.9425 0.94
250 0.975 0.965 0.975 0.965

Ion
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap
30 0.9825 0.96 0.9525 0.9425

100 0.9675 0.9625 0.9475 0.9425
250 1 0.9975 0.9625 0.93

Liver
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap
30 0.985 0.98 0.9525 0.9575

100 0.9725 0.9725 0.96 0.96
250 0.97 0.97 0.9525 0.9325

Spam
N Naive Normal Naive Bootstrap Adaptive Normal Adaptive Bootstrap
30 0.9575 0.9575 0.9575 0.9575

100 0.975 0.97 0.9675 0.96
250 0.975 0.975 0.955 0.95

The true test error was approximated using the observations from the original dataset, as the em-

pirical misclassification rate. The process was repeated 400 times. Table 2 and Figure 2 show the

coverage and CIs’ length, respectively for the four datasets. The heart data set consists 296 obser-

vations, the ion data set consists 351 observations, the liver data set consists 345 observations and

the spam data set consists 4601 observations.

As can be seen, from both the simulation study and the empirical study, the coverage of the

adaptive CIs is very close to the confidence level (of 95%). The naive CIs resulted in more con-

servative coverage than the adaptive CI and with longer confidence intervals. There is no major

difference between the CIs based on normal approximation and CIs based on empirical bootstrap.

6. Concluding remarks. In this work we addressed the challenge of estimating the test error

of a classifier which belongs to an infinite-dimensional RKHS. The test error was not estimated

directly and instead we constructed CIs for the test error. We proposed two approaches for estimat-

ing the CIs, namely, the naive approach and the adaptive approach. For each approach, estimation

of the CI was done using both normal approximation and empirical bootstrap methods. The sim-

ulation comparing the naive and the adaptive methods showed that the adaptive method achieves

a good coverage level while the naive method results in more conservative CIs. The challenge of

constructing these CIs has led to a theoretical understanding in various fields about the conver-
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FIG 2. Boxplots of the length of the confidence intervals for datasets Heart, Ion, Liver, and Spam.

gence of empirical processes that are indexed by a class of functions belonging to RKHS which

can be used in future research.

In this paper we estimated the test error which is the probability of the classifier’s misclassifica-

tion over all the sample space. Future research includes estimating the probability of misclassifi-

cation over a subset S ⊂ X . When the the subset S is a specific point, this quantity is interesting,

since the obtained confidence interval for the test error is actually a confidence interval for point

estimation. Other subsets of interest are subsets in which the classifier is likely to classify well or

to be unreliable.
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We consider survival data that combine three types of observa-

tions: uncensored, right-censored, and left-censored. Such data arises

from screening a medical condition, in situations where self-detection

arises naturally. Our goal is to estimate the failure-time distribu-

tion, based on these three observation types. We propose a novel

methodology for distribution estimation using both parametric and

nonparametric techniques. We then evaluate the performance of these

estimators via simulated data. Finally, as a case study, we estimate

the patience of patients who arrive at an emergency department and

wait for treatment. Three categories of patients are observed: those

who leave the system and announce it, and thus their patience time

is observed; those who get service and thus their patience time is

right-censored by the waiting time; and those who leave the system

without announcing it. For this third category, the patients’ absence

is revealed only when they are called to service, which is after they

have already left; formally, their patience time is left-censored. Other

applications of our proposed methodology are discussed.

1. Introduction. We study the estimation of failure time distribution where the fail-

ure times can be either observed directly, or be right-censored or left-censored. This type of

survival data arises, for example, in estimation of time to the appearance of a medical con-

dition where characteristic symptoms may or may not appear when the condition exists.

Keywords and phrases: Current status data, Left and Right-censoring, Nonparametric estimation, Sur-

vival analysis, Left without being seen
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Specific medical settings include relapse in childhood brain tumors, which may be observed

due to clinical symptoms, or right-censored due to periodic screening with negative result

(no tumor), or left-censored due to periodic screening with a positive result (Minn et al.,

2001). Another medical setting is melanoma cancer, which is observed if self-detected, or

is right censored due to a negative screening (no melanoma), or left-censored if it goes

undetected until screening. Additional examples can be found in Whitehead (1989).

The motivating example for this work comes from estimating customer patience in

service system which, as discussed by Mandelbaum and Zeltyn (2007), is a challenging

problem. In our study, we focus on patients who wait for treatment in an emergency

department (ED). Three categories of patients are observed. The first category consists

of patients who get service and thus their patience time is right-censored by the waiting

time. The second category comprises those who leave the system and announce it, and

thus their patience time is observed while the waiting time is right-censored. The third

category consists of patients who leave the system without announcing it; their absence is

hence revealed only when they are called to service, which is after they have already left;

formally, their patience time is left-censored.

Estimating the patience time is of importance as the decision of patients to leave the

system before getting served might have a strong effect on their physical well-being. There

has been considerable research on the reasons why patients leave an ED before being

served; see Baker et al. (1991), Hunt et al. (2006), Bolandifar et al. (2014), and Batt and

Terwiesch (2015). However, these and other authors have not proposed a model by which

ED patience time - namely the duration that a potential patient is willing to wait for ED

service - can be estimated, and this is our goal here.

We propose novel parametric and nonparametric estimators of the unknown survival

function for this 3-type survival data. We then study their rates of convergence. The

parametric estimator is based on both full and partial likelihoods. We provide condition

under which the parametric estimator is a linear asymptotic normal (LAN) estimator and

converges to a normal distribution in a root-n rate. The nonparametric estimator is based

on nonparametric kernel estimators for density functions and on a novel estimator of the

cumulative probability function that has some similarities to the Nelson–Aalen estimator

(e.g., Klein and Moeschberger, 2013, Chapter 4). We show that, under some regularity
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conditions, the nonparametric estimator point-wise converges to the normal distribution.

We perform a simulation study and compare the proposed parametric and nonparamet-

ric estimators. For the parametric model, we study both correct and misspecified models

and show the different corresponding results. We show how the accuracy changes with

sample size. We then carry out a case study that is based on data of patients waiting for

treatment in an ED, in the U.S. in 2008. We analyzed separately different severity levels

(15106 observations in the emergency group, 43600 in the urgent group, and 26541 in the

semi-urgent group). We conclude with a comparison of the parametric and nonparametric

estimators for the three different severity levels of this dataset.

2. Brief Literature Review. Developing screening methods for medical conditions,

such as breast and melanoma cancers, has a long history (Wilson et al., 1968; Zelen and

Feinleib, 1969). In the classical setting, the medical condition either already exists at the

time of screening and is thus left-censored, or does not exist, and is thus right-censored.

The setting in which self-detection is possible, and thus the condition time is observed, has

been surprisingly mostly ignored in the literature. For example, Minn et al. (2001) treat

both self-detection times and screening times as event times, ignoring the censoring. The

closest model to the one that we present here appears in Whitehead (1989). It is assumed

there that the condition can be detected at screening or before screening due to symptoms.

In both cases, the condition already exists at the time of detection. It is also assumed that

screenings take place at a sequence of fixed time points. Whitehead (1989) recommends

to ignore the extra knowledge gained due to self-reporting and to replace these times with

the time of the next screening. The survival function is then estimated only at the discrete

fixed screening times using standard techniques (Prentice and Gloeckler, 1978).

There has been considerable research effort, dedicated to modeling and analysis of

customer (im)patience while waiting for service. Here we describe several papers that,

together with references therein, provide what is required for a historical background

and state-of-art perspective. First, we recommend the literature review (Section 3) in

the recent Batt and Terwiesch (2015), accompanied by Gans et al. (2003): these survey

patience-research from an operational/queueing view point (mainly Section 6.3.3 in the

latter), while connecting it to the medical literature on patients who are left without being

seen (LWBS) (mainly Section 3 in the former); see also Aksin et al. (2007) who, relative to
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Gans et al. (2003), expand on managerial challenges. Next we mention Mandelbaum and

Zeltyn (2013), which is an Explanatory Data Analysis of (im)patience in telephone call

centers (that appears in a special issue that is devoted to models of queues abandonment).

Finally, and the most related to the present study, are the following two studies. Brown

et al. (2005) applies, in Section 5, the Kaplan–Meier estimator (Kaplan and Meier, 1958)

to estimate the survival functions and consequently hazard rates, of both virtual waiting

time and impatience; the data is that of a call center, in which times of abandonment

are all recorded hence the data is right-censored. Then Wiler et al. (2013), which is also

the source of our present ED data case study, estimate LWBS rates as a function of ED

patient arrival rates, treatment times, and ED boarding times. There was no attempt in

that work to estimate the patience-time distribution.

We conclude this brief survey with the observation that the estimation of customer

(im)patience is relevant beyond screening, call centers, and EDs. For example, Nah (2004)

studies tolerance of Web users (during information retrieval). Yom-Tov et al. (2018) ana-

lyzes chat services, in which customers abandon at any phase during chat-exchanges with

a service center: one expects that such services give rise to the same options as in EDs:

some customers receive service, others abandon without letting anyone know, and the rest

announce their abandonment time.

3. The Model. In the standard setting of right-censored data one observes, for each

patient, either the failure time or the censoring time. In terms of our motivating example,

failure time is patience time while censoring time is the waiting time. Patience time is

observed when patients leave the ED while informing the system of their departure; waiting

time is observed when a patient is called for service. However, unlike in standard right-

censored data and like in current status data, there are also patients who leave without

informing; in this case their absence is observed only when they are called for service,

and this latter time provides an upper bound for their patience time. In other words, the

(virtual) waiting time is observed, and the only information on patience time is that it is

less than this observed waiting time. Hence, in this case, the patience time is left-censored.

More formally, let T be the patient’s failure time, i.e., the time until the patient loses

patience. Let W be the censoring time, i.e., the waiting time until the patient gets (or

could have gotten) service. We assume that T has a cumulative distribution function (cdf)
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F and a probability density function (pdf) f , and that W has cdf G and pdf g. Let ∆ be

the indicator ∆ ≡ 1{T < W}; i.e., ∆ = 1 if the patient loses patience before being called

to service, and ∆ = 0 otherwise.

Let Y be the indicator that is 1 for a patient who leaves and informs when leaving, and

0 otherwise. Denote by q(t) the conditional probability that a patient reports leaving given

that the waiting time equals to t. In other words, q(t) = pr(Y = 1 | T = t). We assume that

the waiting time W and the patience time T are independent. This assumption, which is

common in the right-censored data literature (see, Klein and Moeschberger, 2013, Chapter

3, pages 65-66), seems appropriate in our case study, as we stratify by acuity levels. We also

assume that announcement indicator Y is independent of the waiting time W , as it seems

reasonable that the decision of a patient to report when leaving does not depend on the

waiting time. Summarizing, we assume that the pair (Y, T ) is independent of the waiting

time W . When this assumption does not hold, different theoretical tools are needed for a

valid estimation.

Let U be the recorded time: U ≡ Y T + (1 − Y )W . The observed data consist of the

triplets (Ui, Yi,∆i), i = 1, . . . , n, and there are three categories of patients:

C = 1: The patient gets service, hence the waiting time is observed, which serves as a

lower bound on the patience time; thus the patience time is right censored. Formally,

∆ = 0, Y = 0, and U = W .

C = 2: The patient leaves without being treated and reports departure. The patience time

is thus revealed: Y = 1, ∆ = 1, and U = T .

C = 3: The patient leaves without reporting, hence virtual waiting time (the time that the

patient would have waited had he stayed in the ED) is observed, which provides an

upper bound for the patience time, thus the patience time is left-censored. Formally,

Y = 0, ∆ = 1, and U = W .

Lemma 1. The following equalities hold:

i) pr(U ≤ t, C = 1) =
∫ t

0 g(w)F (w)dw.

ii) pr(U ≤ t, C = 2) =
∫ t

0 q(w)f(w)G(w)dw.

iii) pr(U ≤ t, C = 3) =
∫ t

0 g(w)
∫ w

0 {1− q(x)} f(x)dxdw.

Here, F (t) = 1 − F (t) and G(t) = 1 − G(t) are the survival functions of the patience
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time and the waiting time, respectively.

See the proof in A.1.

For i = 1, 2, 3, we introduce the following sub-stochastic density functions

hi(t) :=
d

dt
pr(U ≤ t, C = i).(1)

From Lemma 1 above, we deduce that

h1(t) = g(t)F (t), h2(t) = q(t)f(t)G(t), h3(t) = g(t)

∫ t

0
{1− q(x)} f(x)dx.

Define

r1(t) ≡ h1(t)

pr(W ≤ T )
, r2(t) ≡ h2(t)

pr(Y = 1,W > T )
, r3(t) ≡ h3(t)

pr(Y = 0,W > T )
.(2)

Then ri is the density function of the observed time U given C = i. Our model assumes

that all denominators are positive.

To summarise what is known and what is to be estimated, there are two unknown

distributions in our setting, G and F , and we aim to estimate them using both parametric

and nonparametric techniques. For each patient, the waiting time is either observed or

right censored. If the patient reports and then leaves, the waiting time is longer than the

observed patience time. Hence, the waiting time is right-censored. Therefore, parametric

and nonparametric estimation for the distribution of waiting time W can be done by

standard techniques for right-censored data. However, estimation of the distribution of

patience time T , is more complicated and is discussed in Sections 4 and 5.

4. Parametric estimation. Assume now that the distributions of both the patience

time and the waiting time belong to some parametric families. More formally, let F =

{f(·; θ), θ ∈ Θ} where Θ ⊆ Rd, G = {g(·; γ), γ ∈ Γ} where Γ ⊆ Rp. We assume that the

density of the patience time can be written as f(t; θ0) ∈ F . We also assume that the density

of the waiting time can be written as g(t; γ0) ∈ G. Write h1(t; θ, γ) ≡ g(t; γ)F (t; θ), and

similarly h2(t; θ, γ) ≡ q(t)f(t; θ)G(t; γ) and h3(t; θ, γ) ≡ g(t; γ)
∫ t

0 {1− q(x)} f(x; θ)dx.

The likelihood of the observed data D = {(Ui, Yi,∆i), i = 1, . . . , n} can be written in

terms of the functions h1, h2, and h3, as follows:

L(D; θ, γ) =
n∏

i=1

{h1(Ui; θ, γ)} 1−∆i {h2(Ui; θ, γ)}∆iYi {h3(Ui; θ, γ)}∆i(1−Yi).
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Using the explicit representations of h1, h2, h3, we obtain that L(D; θ, γ) is given by

n∏

i=1

({
g(Ui; γ)F (Ui; θ)

}
1−∆i

{
q(Ui)f(Ui; θ)G(Ui; γ)

}
∆iYi

×
[
g(Ui; γ)

∫ Ui

0
{1− q(s)} f(s; θ)ds

]∆i(1−Yi) )
.

The value of γ that maximizes this likelihood is independent of θ. Therefore, a maximum

likelihood estimator (MLE) γ̂n to γ0 can be constructed from this likelihood. However,

maximizing the likelihood with respect to θ is difficult. Even if γ is given or estimated, the

maximizer of θ depends on the unknown function q(t). Therefore, we consider the partial

likelihood Lpartial(D; θ; γ) of category C = 1,

n∏

i=1

{
g(Ui; γ)F (Ui; θ)∫∞

0 g(s; γ)F (s; θ)ds

}
1−∆i .

The value of θ that maximizes this partial likelihood depends on γ. We plug the MLE γ̂n

into this partial likelihood. In Theorem 1 below we show that, under standard regularity

conditions, the maximizer θ̂n of Lpartial(D; θ; γ̂n) is a consistent and asymptotically normal

estimator for θ0.

We need the following assumptions:

(A1) The derivative ∂
∂θf(t; θ) is continuous in t for each θ ∈ Θ, ∂

∂γ g(t; γ) is continuous in

t for each γ ∈ Γ.

(A2) For all θ ∈ Θ, arg maxγ∈Γ L(D; θ, γ) is unique, hence denote

γ̂(θ) ≡ arg maxγ∈Γ L(D; θ, γ). It is assumed as well that for each θ ∈ Θ, ∂
∂γL {D; θ, γ̂(θ)} =

0.

(A3) For all γ ∈ Γ, arg maxθ∈Θ Lpartial(D; θ, γ) is unique, hence denote

θ̂(γ) ≡ arg maxθ∈Θ Lpartial(D; θ, γ). It is assumed as well that for each γ ∈ Γ,

∂
∂θLpartial

{
D; θ̂(γ), γ

}
= 0.

Theorem 1. Let γ̂n be the maximizer of L(D; θ; γ) and let θ̂n be the maximizer of

Lpartial(D; θ; γ̂n). Then, as n→∞,

i) γ̂n → γ0 in probability.

ii)
√
n (γ̂n − γ0)→ N (0, Vγ0) in distribution.

iii) θ̂n → θ0 in probability.

35



iv)
√
n
(
θ̂n − θ0

)
→ N (0, Sθ0,γ0) in distribution.

Here Vγ0, Sθ0 , γ0 are covariance matrices as defined in Appendix A.1.

The proof appears in Appendix A.1.

Example 1. Assume that T follows an exponential distribution with rate θ and W

follows an exponential distribution with rate γ. Then

γ̂n =
n− Σn

i=1∆iYi
Σn
i=1Ui

θ̂n =
Σn
i=1(1−∆i)

Σn
i=1Ui(1−∆i)

− γ̂n =
Σn
i=1(1−∆i)

Σn
i=1Ui(1−∆i)

− n− Σn
i=1∆iYi

Σn
i=1Ui

..

The details of the computation appears in Appendix A.5

5. Nonparametric estimation. In this section we propose nonparametric estima-

tors for the survival function of the patience time F and study its theoretical properties.

For simplicity, we restrict the estimation to an interval [0, τ ] for some τ > 0, such that the

probability of W and T being larger than τ is positive. This is a standard condition in sur-

vival estimation (see Kosorok, 2008, Chapter 4.2). Note that for observations of Categories

1 and 3, the waiting-time is observed. For Category 2, only a lower bound of the waiting

time is observed. Hence, the waiting time is either observed or right-censored. Therefore,

estimating the waiting time distribution can be done by using standard survival analy-

sis estimators such as the Kaplan–Meyer estimator (see Klein and Moeschberger, 2013,

Chapter 4). On the other hand, estimating the distribution of the patience time is more

challenging since we cannot distinguish between the density function f and the unknown

function q. Our goal is thus to estimate the distribution of the patience time F .

Assume that over all positive numbers, the waiting time density function g is strictly

positive. Recall that h1(t) = g(t)F (t), h3(t) = g(t)
∫ t

0 {1− q(s)} f(s)ds, where the func-

tions h1, h3 are defined as in (1). Therefore,

h1(t)

h3(t)
=

F (t)

F (t)−
∫ t

0 q(s)f(s)ds
.(3)

which is well defined as g(t) > 0. Reordering the terms in (3), we get that

{
F (t)−

∫ t

0
q(s)f(s)ds

}
h1(t)

h3(t)
= 1− F (t).
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Hence,

F (t) =
h3(t) + h1(t)

∫ t
0 q(s)f(s)ds

h3(t) + h1(t)
.

From the definitions in (2), it follows that

F (t) =
pr(Y = 0, T < W )r3(t) + pr(W ≤ T )r1(t)

∫ t
0 q(s)f(s)ds

pr(Y = 0, T < W )r3(t) + pr(W ≤ T )r1(t)
.(4)

Therefore, we propose to estimate F (t) by estimating the following terms:

(i) pr(W ≤ T ) and pr(Y = 0, T < W ),

(ii) r1(t) and r3(t),

(iii) A(t) ≡
∫ t

0 q(s)f(s)ds.

Estimating the expression in (i) can be done by the empirical estimators: p̂r(T ≤W ) =

n−1Σn
i=1(1−∆i), p̂r(Y = 0,W < T ) = n−1Σn

i=1∆i(1− Yi). These estimators converge, by

the central limit theorem (CLT), to pr(W ≤ T ) and pr(Y = 0, T < W ), respectively, at

the rate of n1/2.

Since r1 and r3 are density functions, they can be estimated using a kernel estimator

(Tsybakov, 2008, Chapter 1.2). Let r̂1 and r̂3 be kernel estimators of r1 and r3, respectively.

Assume that both r1 and r3 belong to a Sobolev function class of order β. Then for each

t > 0, both r̂1(t) and r̂3(t) converge at a rate of nβ/(2β+1) (see Tsybakov, 2008, Chapter

1.7, for both the definition of a Sobolev class and the proof).

We now turn to estimate the term A(t) =
∫ t

0 q(s)f(s)ds. A nonparametric estimator

that we created for this term is defined and proven to be consistent in the following lemma.

Lemma 2. Let

N̂n(t) ≡ 1

n

n∑

i=1

Yi∆i1{Ui ≤ t}, Ŷn(t) ≡ 1

n

n∑

i=1

1{Ui ≥ t} .

Define D̂n(t) ≡
∫ t

0
dN̂n(s)

Ŷn(s)
. Then Â(t) ≡ 1− exp

{
−D̂n(t)

}
converges pointwise to A(t), at

a rate of n1/2, for every t ∈ [0, τ ].

The proof is given in Appendix A.3.

By plugging in the estimators

p̂r(Y = 0,W < T ), p̂r(T ≤W ), r̂3(t), r̂1(t), Â(t),

37



to the equation in (4), we get that

F̂n(t) =
p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)Â(t)

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)
,(5)

is an estimator of F (t).

Theorem 2. The estimator F̂n(t) converges pointwise to F (t) at a rate of nβ/(2β+1),

for every t ∈ [0, τ ].

The proof appears in Appendix A.4. Since that F̂ is based on density estimation, it is

not necessarily monotonic, we therefore replace it with a monotonic approximation. The

monotonic approximation is by taking the cumulative sup.

6. Simulations. We study the performance of both the parametric and nonparamet-

ric estimators that were proposed in Sections 4 and 5, respectively. Based on the setting

of the case study discussed in Section 7, we consider two simulation settings. In the case

study, both the exponential and Weibull distributions seem to fit well the waiting time

and patience time distributions, respectively.

The case study data also indicated that the mean of the waiting time W is smaller than

the patience time T . Thus, the two simulation settings consist of samples from exponential

and Weibull distributions in which the waiting time has a smaller mean then the patience

time mean. In the first setting, a sample was taken from the model in which the patience

time T follows an exponential distribution with rate 4 (or scale 1
4), and the waiting time

W follows an exponential distribution with rate 10 (or scale 1
10). In the second setting a

sample was taken from a model in which the patience time T follows a Weibull distribution

with scale 1
4 and shape 2, and the waiting time W follows an exponential distribution with

rate 10. In both settings, the unknown probability of announcement is q(t) = exp(−12t).

Taking the probability of announcement to be the increasing function q(t) = 1−exp(−12t)

or the constant function q(t) = 0.5 yields similar results which are omitted. Moreover, we

experimented with additional numerical values. The behavior and conclusions, as reported

here, remain consistent across these experiments.

In each setting, we calculated the parametric estimator for the scale of T for five dif-

ferent sample sizes (N = 100, 200, 500, 1000, 2000). For each sample size, we repeated the

simulation 100 times. When using the parametric method, it was assumed that both T
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and W follow an exponential distribution with unknown parameters. Note that this as-

sumption holds for the first setting but does not hold for the second one. In other words,

the second setting is carried out under a misspecified model. The results are shown in

Figure 1.

We compare F̂n, the estimator of the survival function of T , to the true survival func-

tion F 0. For the parametric estimation, F̂n(t) = exp(−θ̂t), while for the nonparametric

estimator F̂n(t) is given by (5). The comparison is done using mean square error (MSE),

which is defined by

MSE(F̂n, F 0) ≡
∫ ∞

−∞

{
F̂n(t)− F 0(t)

}2
f0(t)dt ,

where f0 is the density of T . The parametric and nonparametric survival function estima-

tors are demonstrated in Figures 2 and 3. Figure 2 represents the results of the first setting

in which T follows an exponential distribution with rate 4 and W follows an exponential

distribution with rate 10. Figure 3 represents the results of the second setting in which

T follows a Weibull distribution with scale 1
4 and shape 2, and W follows an exponential

distribution with rate 10. Summaries of the MSE are given in Table 1. Not surprisingly,

for Setting 1, since the parametric model is correct, the MSE is smaller for the paramet-

ric estimator. Similarly, since in Setting 2 the parametric model is incorrect, the MSE is

smaller for the nonparametric estimator.

7. Case study. Retrospective data were collected from all patient presentations to

triage at an urban, academic, adult-only emergency department (ED) with visits in calen-

dar year 2008. This data was used for the analysis in Wiler et al. (2013). The data consist

of the waiting time of patients arriving at emergency rooms. One of the categories defined

in this data is acuity. Since our model assumes that all patients follow the same distribu-

tion, we calculated the estimators for each level of acuity separately. We focused on the

following three levels of acuity: emergency, urgent, and semi-urgent. The emergency level

consist of 15106 patients, the urgent level consist of 43600 patients, and the semi-urgent

level consist of 26541 patients.

The data consists of the triple variables (Ui,∆i, Yi) described in Section 3. At each

acuity level, an observation is categorized to one of the three possible categories.

Parametric and nonparametric estimators for the survival of each acuity level were
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calculated. The results of these estimators are given in Figures 4 and 5. As can be seen

in Figure 4, the nonparametric estimators of the patience time are stochastically ordered

by levels of acuity. In other words, patients at the severe acuity level are less probable to

lose patience than patients at the urgent level, who in turn are less prone to lose patience

than patients at the semi-urgent level. The results for the parametric estimator seem

unreasonable since one would expect that patients with more severe acuity level are more

likely to lose patience, and lose it faster.

8. Discussion. In this paper, we consider survival data that combine observed, right-

censored, and left-censored data. The setting we analyzed was that of patients who wait

for treatment in an emergency department, where some patients may leave without being

seen. We proposed both parametric and nonparametric estimators for the distribution of

the patience time. Using simulation, we showed that when the parametric model holds,

the parametric estimator estimates the patience time well. However, when the model

is misspecified, the nonparametric estimator behaved better. In our case study, we also

observed that the nonparametric estimator performed better.

So far, no baseline covariates were given. Novel parametric and nonparametric estima-

tors are needed for addressing settings that include baseline covariates.
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APPENDIX A: PROOFS

A.1. Proof of Lemma 1.

pr(U ≤ t, C = 1) =pr(U ≤ t,W ≤ T )

=pr(W ≤ t,W ≤ T )

=

∫ t

0
pr(W ≤ T |W = s)g(s)ds

=

∫ t

0
pr(s ≤ T )g(s)ds

=

∫ t

0
g(s)F (s)ds,
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where in the fourth equality we use the independence between W and (Y, T ).

This establishes i). For ii), we have

pr(U ≤ t, C = 2) =pr(U ≤ t, Y = 1, T < W )

=pr(T ≤ t, Y = 1, T < W )

=

∫ t

0
pr(s < W | Y = 1, T = s)q(s)f(s)ds

=

∫ t

0
pr(s < W )q(s)f(s)ds

=

∫ t

0
q(s)f(s)G(s)ds,

where in the fourth equality we use the independence between W and (Y, T ).

Finally, for iii),

P (U ≤ t, C = 3) =pr(U ≤ t, Y = 0, T < W )

=pr(W ≤ t, Y = 0, T < W )

=

∫ t

0
pr(Y = 0, T < s |W = s)g(s)ds

=

∫ t

0
g(s)pr(Y = 0, T < s)ds

=

∫ t

0
g(s)

∫ s

0
pr(Y = 0 | T = x)f(x)dxds

=

∫ t

0
g(s)

∫ s

0
{1− q(x)} f(x)dxds,

where in the fourth equality we use the independence between W and (Y, T ).

A.2. Proof of Theorem 1. The log of the full likelihood is

l(D; θ, γ) =
n∑

i=1

[
(1−∆i)

(
log g(Ui; γ) + logF (Ui; θ)

)

+ ∆iYi
(
log q(Ui) + log f(Ui; θ) + logG(Ui; γ)

)

+ ∆i(1− Yi)
{

log g(Ui; γ) + log

∫ Ui

0
(1− q(s))f(s; θ)ds

}]
.

Given the data D,

1

n
l(D; θ, γ) = Pn {mγ(U,∆, Y ) + c(U,∆, Y ; θ)} ≡ 1

n

n∑

i=1

{mγ(Ui,∆i, Yi) + c(Ui,∆i, Yi; θ)}

(6)
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where mγ : R+ × {0, 1}2 → R is defined by

mγ(u, δ, y) ≡ (1− δ) log g(u; γ) + ∆y logG(u; γ) + δ(1− y) log g(u; γ).

and

c(u, δ, y; θ) ≡(1− δ) logF (u; θ)

+ δy (log q(u) + log f(u; θ)) + δ(1− y) log

∫ u

0
{1− q(s)} f(s; θ)ds.

From assumption A1 we obtain that, for each θ ∈ Θ, arg maxγ∈Γ l(D; γ, θ) = arg maxγ∈Γ Pn(mγ).

The γ that maximizes L(D; θ, γ) does not depend on the value of θ or the function p. De-

fine Mn(γ) ≡ Pnmγ and M(γ) ≡ Pmγ .If, for a general function h, Ph ≡
∫
h(x)dP (x) and

Pnh ≡ n−1
∑n

i=1 h(Xi) then by Assumptions A1–A3, Theorem 5.7 in van der Vaart (2000)

can be applied. Therefore γ̂n → γ0, in probability, which concludes the proof of i).

Given the data D, the term ∂l(D;θ,γ)
∂γ is a function of γ and does not depend on the

unknown function p. We also have

1

n

∂l(D; θ, γ)

∂γ
= Pnψγ(U,∆, Y ) ≡ 1

n

n∑

i=1

ψγ(Ui,∆i, Yi),

where ψγ : R+ × {0, 1}2 → R is defined as

ψγ(u, δ, y) ≡ (1− δ)
∂
∂γ g(u; γ)

g(u; γ)
− δy

∂
∂γG(u; γ)

G(u; γ)
+ δ(1− y)

∂
∂γ g(u; γ)

g(u; γ)
.

By Assumptions (A1)–(A3), ψγ satisfies the conditions of Theorem 5.41 in van der Vaart

(2000) and, therefore,

√
n(γ̂n − γ0) = −(Pψ̇γ0)−1 1√

n

n∑

i=1

ψγ0(Ui,∆i, Yi) + op(1),

where ψ̇γ(x) = ∂
∂γψγ(x). Hence γ̂n is a linear asymptotically normal (LAN) estimator with

influence function ϕ ≡ −(Pψ̇γ0)−1ψγ0 . From all of the above we get that ii) is proved

with Vγ0 = (Pψ̇γ0)−1Pψγ0ψ
t
γ0(Pψ̇γ0)−1.

To prove iii), note that due to the term log
∫ Ui

0 (1− q(s))f(s; θ)ds that appears in l(D; θ, γ),

the term ∂l(D;θ,γ)
∂θ depends on the unknown function p. We therefore consider a partial

likelihood function such that its derivate with respect to θ does not depend on p. The

partial likelihood that satisfies this request is the partial likelihood of C = 1:

n∏

i=1

{
g(Ui; γ)F (Ui; θ)∫∞

0 g(s; γ)F (s; θ)ds

}
1−∆i
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The log of the partial likelihood is

lpartial(D; θ, γ) =

n∑

i=1

(1−∆i)

{
log g(Ui; γ) + logF (Ui; θ)− log

∫ ∞

0
g(s; γ)F (s; θ)ds

}
.

Given the data D, the term lpartial(D; θ, γ) is a function only of the parameters θ and γ.

We also have

1

n
lparital(D; θ, γ) = Pnrθ,γ(U,∆, Y ) ≡ 1

n

n∑

i=1

rθ,γ(Ui,∆i, Yi),

where rθ,γ : R+ × {0, 1}2 → R is given by

rθ,γ(U,∆, Y ) ≡ (1−∆)

{
log g(U ; γ) + logF (U ; θ)− log

∫ ∞

0
g(s; γ)F (s; θ)ds

}
.

Define Mn(θ, γ) ≡ Pnrθ,γ , and M(θ, γ) ≡ Prθ,γ . Then, Theorem 5.7 in van der Vaart

(2000) can be applied. Therefore
(
θ̂n, γ̂n

)
→ (θ0, γ0) in probability, and in particular

θ̂n → θ0 in probability, and iii) is proven.

In order to prove iv), note that

1

n

∂lpartial(D; θ, γ)

∂γ
= Pnφθ,γ(U,∆, Y ) ≡ 1

n

n∑

i=1

φθ,γ(Ui,∆i, Yi),

where φθ,γ : R+ × {0, 1}2 → R is defined as

φθ,γ(u, δ, y) ≡ (1− δ)
{

∂
∂θF (u; θ)

F (u; θ)
−

∂
∂θ

∫∞
0 g(s; γ)F (s; θ)ds∫∞

0 g(s; γ)F (s; θ)ds

}
.

Using Assumptions A1–A3, together from Theorem 5.41 in van der Vaart (2000), we

obtain that

√
n(γ̂n − γ0) =

1√
n

n∑

i=1

{
−(Pψ̇γ0)−1ψγ0(Ui,∆i, Yi)

}
+ op(1).

Define Φn(θ, γ) ≡ Pnφθ,γ and note that Φ(θ0, γ0) ≡ Pφθ0,γ0 = 0 (since under the true

parameters Pφθ0,γ0 = ∂
∂θ

∫
dh0 = ∂

∂θ1 = 0, where dh0 is the true distribution of category

1).
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By Talyor’s theorem,

0 = Φn(θ̂n, γ̂n) = Φn(θ0, γ0) +

{
∂

∂θ
Φn(θ0, γ0)

}T
(θ̂n − θ0) +

{
∂

∂φ
Φn(θ0, γ0)

}T
(γ̂n − γ0) + op

(
n−1/2

)

⇒0 =
√
nΦn(θ0, γ0) +

{
∂

∂θ
Φn(θ0, γ0)

}T √
n
(
θ̂n − θ0

)
+

{
∂

∂γ
Φn(θ0, γ0)

}T √
n {γ̂n − γ0}+ op(1).

=
√
nΦn(θ0, γ0) +

{
∂

∂θ
Φn(θ0, γ0)

}T √
n
(
θ̂n − θ0

)

−
{
∂

∂γ
Φn(θ0, γ0)

}T
(Pψ̇γ0)−1 1√

n

n∑

i=1

ψγ0(Ui,∆i, Yi) + op(1)

=
1√
n

n∑

i=1

[
φθ0,γ0(Ui,∆i, Yi)−

{
∂

∂γ
Φn(θ0, γ0)

}T
(Pψ̇γ0)−1ψγ0(Ui,∆i, Yi)

]

+

{
∂

∂θ
Φn(θ0, γ0)

}T √
n(θ̂n − θ0) + op(1).

Elementary arithmetic leads to

√
n
(
θ̂n − θ0

)
= −

(
EET

)−1 1√
n

n∑

i=1

{
φθ0,γ0(Ui,∆i, Yi)−BT (Pψ̇γ0)−1ψγ0(Ui,∆i, Yi)

}
+ op(1),

where B ≡ ∂
∂γΦ(θ0, γ0), and E ≡ ∂

∂θΦ(θ0, γ0). Hence, θ̂n is a LAN estimator with the

influence function

ϕ = −
(
EET

)−1 1√
n

{
φθ0,γ0 −BT (Pψ̇γ0)−1ψγ0

}
.

Summarizing,

√
n(θ̂n − θ0)→ N(0, Sθ0,γ0) in distribution, where Sθ0,γ0 = PϕϕT , hence, iv) is proven.

A.3. Proof of Lemma 2.

Proof. We use similar arguments to those in the proof of the convergence of the

Nelson–Aalen estimator to a cumulative hazard function (see Kosorok, 2008, page 240).

Hence we have that

√
n




N̂n(t)−N(t)

Ŷn(t)− Y (t)





= Op(1),

where N(t) = pr(Y = 1, T ≤W,T ≤ t) and Y (t) = pr(U ≥ t).

Since, by Section 3,

{U > t} = {Y = 0,W > t} ∪ {Y = 1,W > t, T > t}.
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Hence,

pr(U > t) = pr(Y = 0,W > t) + pr(Y = 1,W > t, T > t)

= pr(W > t) {pr(Y = 0) + pr(Y = 1, T > t)}

= pr(W > t)
(
pr(Y = 0) + pr(Y = 1)− pr(Y = 1, T ≤ t)

)

= pr(W > t) {1− pr(Y = 1, T ≤ t)}

= G(t)

{
1−

∫ t

0
q(s)f(s)ds

}
,

where in the second equality we use the independence between W and (Y, T ).

By Lemma 1

pr(Y = 1, T ≤W,T ≤ t) =

∫ t

0
q(s)f(s)G(s)ds.

Using the continuity of the derivative operator and of the integral operator, we get that

D̂n(t)→
∫ t

0

q(s)f(s)G(s)

G(s)
{

1−
∫ s

0 q(x)f(x)ds
}ds

in probability.

Note that

∫ t

0

G(s)q(s)f(s)

G(s)
{

1−
∫ s

0 q(x)f(x)dx
}ds =

∫ t

0

q(s)f(s){
1−

∫ s
0 q(x)f(x)dx

}ds

= −
∫ t

0

∂

∂s
log

{
1−

∫ s

0
q(x)f(x)dx

}
ds = − log

{
1−

∫ t

0
q(s)f(s)ds

}
.

Hence, by the delta method (see Kosorok, 2008, Chapter 12.2.2.2), we get that

D̂n(t)→ − log

{
1−

∫ t

0
q(s)f(s)ds

}

in probability, with convergence at rate n1/2.

Since y = − log (1− x) ⇔ x = 1− exp (−y) and by the continuous mapping theorem

(see Kosorok, 2008, Theorem 7.7), we get that Â(t) = 1− exp(−D̂n(t)) is an estimator of

∫ t
0 q(s)f(s)ds, at the rate of n1/2 as desired.

A.4. Proof of Theorem 2. For the proof of Theorem 2, we need the following

lemma, which is elementary hence stated without proof.
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Lemma 3. Let (an)∞n=1, (bn])
∞
n=1 be positive sequences. If Xn −X = Op(an) and

Yn − Y = Op(bn), as well as P (|X| > l) = 1 for some l > 0. Then we have:

i) Xn + Yn − (X + Y ) = Op(an ∨ bn),

ii) XnYn −XY = Op(an ∨ bn),

iii) 1
Xn
− 1

X = Op(an).

Proof of Theorem 2. Recall that

F̂n(t) =
p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)Â(t)

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)

is an estimator of F (t).

For all t > 0,

p̂r(Y = 0,W < T )− pr(Y = 0,W < T ) = Op(n
−1/2) ,

and

p̂r(T ≤W )− pr(T ≤W ) = Op(n
−1/2) ,

as both are empirical distribution estimators. By Chapter 1.7 of Tsybakov (2008),

for all t > 0, r̂j(t) − rj(t) = Op(n
−β/(2β+1)), for j = 1, 3. By Lemma 2, Â(t) − A(t) =

Op(n
−1/2).

By Lemma 3.ii)

p̂r(Y = 0,W < T )r̂3(t)− pr(Y = 0,W < T )r̂3(t) = Op(n
−β/(2β+1)) ,

and

p̂r(T ≤W )r̂1(t)Â(t)− pr(T ≤W )r̂1(t)A(t) = Op(n
−β/(2β+1)) .

Therefore, by Lemma 3.i),

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)Â(t)− pr(Y = 0,W < T )r3(t)− pr(T ≤W )r1(t)A(t)

= Op(n
−β/(2β+1)) .
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Similarly,

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)− pr(Y = 0,W < T )r3(t)− pr(T ≤W )r1(t)

= Op(n
−β/(2β+1)).

By Lemma 3.iii),

1

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)
− 1

pr(Y = 0,W < T )r3(t) + pr(T ≤W )r1(t)

= Op(n
−β/(2β+1)).

By Lemma 3.i) again,

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)Â(t)

p̂r(Y = 0,W < T )r̂3(t) + p̂r(T ≤W )r̂1(t)
− pr(Y = 0,W < T )r3(t) + pr(T ≤W )r1(t)A(t)

pr(Y = 0,W < T )r3(t) + pr(T ≤W )r1(t)

= Op(n
−β/(2β+1)).

In other words, F̂n(t)−F (t) = Op(n
−β/(2β+1)), which complete the proof of Theorem 2.

A.5. Details on Example 1. Assuming that T follows an exponential distribution

with rate θ and W follows an exponential distribution with rate gamma then the likelihood

L(D; θ, γ) is

n∏

i=1

(
{γ exp (−γUi) exp (−θUi)} 1−∆i {q(Ui)θ exp (−θUi) exp (−γUi)}∆iYi

×
[
γ exp (−γUi)

∫ Ui

0
{1− q(s)} θ exp (−θs)

]∆i(1−Yi) )
.

Hence,

logL(D; θ, γ)

=
n∑

i=1

(1−∆i)(log γ − γUi) +
n∑

i=1

∆iYi(−γUi) +
n∑

i=1

∆i(1− Yi)(log γ − γUi) + C(U1, U2, ..., Un; θ)

= (n−
n∑

i=1

∆iYi) log γ − γ
n∑

i=1

Ui + C(U1, U2, ..., Un; θ).

Therefore,

∂log  L(D; θ, γ)

∂γ
=
n−∑n

i=1 ∆iYi
γ

−
n∑

i=1

Ui,
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and hence, the value of γ which maximize L(D; θ, γ) is γ̂n =
n−∑n

i=1 ∆iYi∑n
i=1 Ui

.

The partial likelihood Lpartial(D; θ; γ) of category C = 1,

n∏

i=1

{
g(Ui; γ)F (Ui; θ)∫∞

0 g(s; γ)F (s; θ)ds

}
1−∆i

=

n∏

i=1

{
γ exp (−γUi) exp (−θUi)∫∞

0 γ exp (−γs) exp (−θs)ds

}
1−∆i =

n∏

i=1

{
γ exp (−Ui(γ + θ))∫∞

0 γ exp (−s(γ + θ))ds

}
1−∆i

=
n∏

i=1

{
γ exp (−Ui(γ + θ))

γ
γ+θ

}
1−∆i =

n∏

i=1

[(γ + θ) exp (−Ui(γ + θ))]1−∆i .

Hence,

logLpartial(D; θ; γ) =
n∑

i=1

(1−∆i) (log (γ + θ)− Ui(γ + θ)) .

Therefore,

∂log  Lpartial(D; θ, γ)

∂θ
=

n∑

i=1

(1−∆i)(
1

γ + θ
− Ui).

The parametric estimator for θ is the maximizer of Lpartial(D; θ, γ̂n) by θ which is

θ̂n =

∑n
i=1(1−∆i)∑n

i=1 Ui(1−∆i)
− γ̂n =

∑n
i=1(1−∆i)∑n

i=1 Ui(1−∆i)
− n−∑n

i=1 ∆iYi∑n
i=1 Ui

.
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Fig 1. Parametric estimation. Setting 1:The patience time T follows an exponential distribution with rate 4
(scale 1

4
) and the waiting time W follows and exponential distribution with rate 10, the parametric estimator

converges to the true scale 1
4

. Setting 2:The patience time T follows a Weibull distribution with scale 1
4

and
shape 2 while the waiting time W follows an exponential distribution with rate 10, the parametric estimator
does not converge to the true scale 1

4
.

Setting 1 Setting 2
Parametric Nonparametric Parametric Nonparametric

N mean median sd mean median sd mean median sd mean median sd

100 6.23 2.79 8.2 12.4 11.02 6.4 23.24 18.44 11.61 13.86 11.59 9.66
200 3.29 1.32 4.94 8.07 7.04 4.4 19.07 15.67 7.87 8.69 7.17 6.43
500 1.31 0.77 1.57 4.5 4.07 1.97 16.53 15.01 4.09 3.72 3.16 2.15
1000 0.72 0.25 0.99 3.24 3.05 1.49 15.38 14.16 3.68 2.14 1.88 1.18
2000 0.36 0.16 0.53 2.29 2.09 1.07 14.8 14.18 1.98 1.55 1.43 0.83

Table 1. MSE for Settings 1 and 2. The table summarizes the MSE that was calculated (100 times) for
each of the sample sizes. For Setting 1, the patience time T follows an exponential distribution with rate 4
and the waiting time W follows an exponential distribution with rate 4. In Setting 2 the patience time T
follows a Weibull distribution with scale 1

4
and shape 2, while the waiting time W follows an exponential

distribution with rate 10. As can be seen the nonparametric estimator responded with a lower MSE.
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Fig 2. Setting 1. The blue, red, and black curves represent the nonparametric, parametric, and true survival
functions, respectively, for N = 100, 200, 500 and 1000.
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Fig 3. Second setting. The blue, red, and black curves represent the nonparametric, parametric, and true
survival functions, respectively.

Fig 4. Compression of the estimator for the survival function of the patience time at the three different
levels of severity.
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Fig 5. Compression of the nonparametric and parametric estimators for the survival of the patience time
by different levels of acuity.
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4. Discussion

The main question posed in this dissertation was how to overcome the difficulties and to

analyze well complicated dataset structures. The estimation methods that were proposed

include parametric and nonparametric approaches. The main question posed in this

dissertation is how to analyze complicated dataset structures. The estimation methods

included parametric and nonparametric estimators and are relevant to very wide settings.

Chapter 2 dealt with the challenge of estimating the test error. The test error is a

functional of the data set and is defined as the probability of the classifier’s misclassifica-

tion. Due to its structure, it is difficult to construct a high quality point estimator for the

test error. Instead of a point estimator, we proposed CIs for the test error. We proposed

two construction methods—naive CIs and adaptive CIs. Each of these constructions was

applied by both normal approximation and empirical bootstrap methods. Using simula-

tion and analysis, we showed that the naive CIs are conservative and longer compared

to the adaptive CIs. We also saw that there was no major difference between the CIs

that were constructed by the normal approximation or the empirical bootstrap methods.

The challenge of constructing these CIs has led to various theoretical perceptions about

the convergence of empirical processes that are indexed by a class of RKHS functions.

These theoretical perceptions can be used in future research. Future research directions

include inference on more general functionals of the classifier, such as the probability of

misclassification over a subset of the sample space.

In Chapter 3, we considered incomplete data that involves survival analysis, which has

observed, right-censored, and left-censored data. Despite the fact that the data are not

complete in this setting, we proposed parametric and nonparametric estimators. Using a

simulation study, we showed that for a specified probabilistic structure, the parametric

estimator holds and estimates well the patience time. When the model is misspecified,

the nonparametric estimator behaves better. In the case study, we also observed that the

nonparametric estimator performed better. Future research will address developing novel

parametric and nonparametric estimators that can handle baseline covariates.
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 תקציר

בשנים האחרונות הרבה מסדי נתונים מצריכים ניתוח סטטיסטי מסובך. מסדי נתונים עם מבנה מורכב מתקבלים 

כאשר ההנחות על אפיון התפלגות הנתונים הן הנחות מאוד כלליות או כאשר חלק מן התצפיות אינן מכילות את 

היא לפתח תיאוריה סטטיסטית שתוכל להתגבר על המידע המדויק אותו אנו רוצים לנתח. במקרים כאלה המטרה 

 הקשיים האלה ולהוביל לניתוח סטטיסטי אופטימלי.

דוגמה למודל שבו יש הנחות מאוד כלליות על אפיון התפלגות הנתונים הוא מודל של מיון נתונים סטטיסטי. במיון 

רי. המטרה במידול כזה היא נתונים סטטיסטי המשתנה המסביר הוא רב ממדי ואילו המשתנה התלוי הוא בינא

לייצר ממיין. הממיין הוא פונקציה שמאפשרת למיין תצפית מסבירה חדשה לאחד משני הערכים אותם מקבל 

המשתנה המוסבר. מידת הצלחת הממיין נמדדת בדרך כלל על ידי מבחן השגיאה שלו. מבחן השגיאה מוגדר 

ב המודד את טיב ההצלחה של הממיין. עם זאת, ניתוח כהסתברות למיון שגוי. לפיכך מבחן השגיאה הוא מדד חשו

סטטיסטי עבור מבחן השגיאה הוא מורכב שהרי מודל מיון נתונים סטטיסטים הוא כה כללי כך שאפילו קצב 

ההתכנסות של הממיין אינו ידוע. בפרק... אנו מציעים ניתוח סטטיסטי עבור מבחן השגיאה באמצעות בניית רווחי 

י סוגים של רווחי סמך, נאיבי ואדפטיבי. יצירת רווח הסמך הנאיבי הייתה פשוטה יחסית ואילו סמך. אנו בונים שנ

יצירת רווח הסמך האדפטיבי מהווה אתגר קשה שמערב הבנה עמוקה בתיאורה של תהליכים אמפיריים. שני 

קירוב להתפלגות -הסוגים של רווחי הסמך שאנו מציעים נבנים על  סמך שתי שיטות ידועות בתהליכים אמפיריים

 נורמלית ובוטסטרפ אמפירי.

סוג אחר של מודל עם מסד נתונים ובו מבנה מורכב הוא כאשר חלק מן התצפיות אינן מכילות את המידע המדויק 

אותו אנו רוצים לנתח. תופעה כזאת קורית במודל של ניתוח הישרדות. בפרק... אנו מתמודדים עם מודל הישרדות 

יחס ללקוחות המחכים לטיפול בחדר מיון. התצפיות מחולקות לשלוש קטגוריות. חלק מן ספציפי. מודל זה מתי

המטופלים מאבדים את סבלנותם תוך כדי המתנה בתור. מבין אלו שמאבדים את סבלנותם יש כאלה המכריזים 

ר עד למערכת כי הם נוטשים את התור. עבור מטופלים בקטגוריה זו יש זמן תיעוד מדויק של משך הזמן שעב

שפקעה סבלנותם. בקטגוריה השנייה יש מטופלים שהחליטו לנטוש את המערכת אך לא דיווחו על כך. כיוון שלא 

דיווחו, הם נקראים להיכנס לטיפול ומשך הזמן שעבר עד שנקראו להיכנס מתועד והוא מהווה חסם עליון למשך 

שנכנסו לטיפול, משך הזמן שעבר עד  הזמן שעבר עד שפקעה סבלנותם. בקטגוריה השלישית יש את המטופלים

שנקראו לטיפול מתועד והוא מהווה חסם תחתון למשך הזמן שעובר עד פקיעת הסבלנות שלהם. למרות שבמודל 

זה עבור חלק לא מבוטל מהמטופלים אין תיעוד מדויק של משך הזמן עד פקיעת הסבלנות, יש בפרק... תיאוריה 

 ת משך זמן עד פקיעת הסבלנות של המטופלים.לאמידה פרמטרית ואפרמטרית של התפלגו
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