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Support Vector Machines for Current Status Data

Yael Travis-Lumer

ABSTRACT

Current status data is a data format where the time to event is restricted to knowledge of

whether or not the failure time exceeds a random monitoring time. We develop a support

vector machine learning method for current status data that estimates the failure time

expectation as a function of the covariates. In order to obtain the support vector machine

decision function, we minimize a regularized version of the empirical risk with respect

to a data-dependent loss. We show that the decision function has a closed form. Using

finite sample bounds and novel oracle inequalities, we prove that the obtained decision

function converges to the true conditional expectation for a large family of probability

measures and study the associated learning rates. Finally we present a simulation study

that compares the performance of the proposed approach to current state of the art.
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1 Introduction

In this paper we aim to develop a general, model free, method for analyzing current

status data using machine learning techniques. In particular, we propose a support vector

machine (SVM) learning method for estimation of the failure time expectation for current

status data. SVM was originally introduced by Vapnik in the 1990’s and is firmly related

to statistical learning theory (Vapnik, 1999). The choice of SVMs for current status data

is motivated by the fact that SVMs can be implemented easily, have fast training speed,

produce decision functions that have a strong generalization ability and can guarantee

convergence to the optimal solution, under some weak assumptions (Shivaswamy et al.,

2007).

Current status data is a data format where the failure time T is restricted to knowledge

of whether or not T exceeds a random monitoring time C. This data format is quite

common and includes examples from various fields. Jewell and van der Laan (2004)

mention a few examples including: studying the distribution of the age of a child at

weaning given observation points; when conducting a partner study of HIV infection over

a number of clinic visits; and when a tumor under investigation is occult and an animal is

sacrificed at a certain time point in order to determine presence or absence of the tumor.

For instance, in the last example of carcinogenicity testing, T is the time from exposure

to a carcinogen and until the presence of a tumor, and C is the time point at which the

animal is sacrificed in order to determine presence or absence of the tumor. Clearly, it is

difficult to estimate the failure time distribution since we cannot observe the failure time

T . These examples illustrate the importance of this topic and the need to find advanced

tools for analyzing such data.

We present a support vector machine framework for current status data. We propose

a learning method, denoted by CSD-SVM, for estimation of the failure time expectation.

We investigate the theoretical properties of the CSD-SVM, and in particular, prove con-

sistency for a large family of probability measures. In order to estimate the conditional

expectation we use a modified version of the quadratic loss. Using the methodology of

van der Laan and Robins (1998), we construct a data dependent version of the quadratic

loss. Since the failure time T is not observed, our data dependent loss function is based

on the censoring time C and on the current status indicator. Finally, in order to obtain
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a CSD-SVM decision function for current status data, we minimize a regularized version

of the empirical risk with respect to this data-dependent loss.

There are several approaches for analyzing current status data. Traditional methods

include parametric models where the underlying distribution of the survival time is as-

sumed to be known (such as Weibull, Gamma, and other distributions with non-negative

support). Other approaches include semiparametric models, such as the Cox proportional

hazard model, and the accelerated failure time (AFT) model (see, for example, Klein

and Moeschberger, 2013). In the Cox model, the hazard function is assumed to be pro-

portional to the exponent of a linear combination of the covariates. In the AFT model,

the log of the failure time is assumed to be a linear function of the covariates. Several

works including Diamond et al. (1986), Jewell and van der Laan (2004) and others have

suggested the Cox proportinal hazard model for current status data, where the Cox model

can be represented as a generalized linear model with a log-log link function. Other works

including Tian and Cai (2006) discussed the use of the AFT model for current status data

and suggested different algorithms for estimating the model parameters. Needless to say

that both parametric and semiparametric models demand stringent assumptions on the

distribution of interest which can be restrictive. For this reason, additional estimation

methods are needed.

Over the past two decades, some learning algorithms for censored data have been

proposed (such as neural networks and splitting trees), but mostly with no theoretical

justification. Additionally, most of these algorithms cannot be applied to current status

data but only to other, more common, censored data formats. Recently, several works

suggested the use of SVMs for survival data. Van Belle et al. (2007) suggested the use

of SVMs for survival analysis, and formulated the task as a ranking problem. Shortly

after, Khan and Zubek (2008) suggested the use of SVMs for regression problems with

censored data; this was done by asymmetrically modifying the ε-insensitive loss function.

Both examples were empirically tested but lacked theoretical justification. ? proposed an

empirical quantile risk estimator, which can also be applied to right censoring, and studied

the estimator’s performance. Goldberg and Kosorok (2012) studied an SVM framework

for right censored data and proved that the algorithm converges to the optimal solution.

Shiao and Cherkassky (2013) suggested two SVM-based formulations for classification

problems with survival data. These examples illustrate that initial steps in this direction
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have already been taken. However, as far as we know, the only SVM-based work that

can also be applied to current status data is by Shivaswamy et al. (2007) which has

a more computational and less theoretic nature. The authors studied the use of SVM

for regression problems with interval censoring and, using simulations, showed that the

method is comparable to other missing data tools and performs significantly well when

the majority of the training data is censored.

The contribution of this work includes the development of an SVM framework for

current status data, the study of the theoretical properties of the CSD-SVM, and the

development of new oracle inequalities for censored data. These inequalities, together

with finite sample bounds, allow us to prove consistency and to compute learning rates.

The paper is organized as follows. In section 2 we describe the formal setting of current

status data and discuss the choice of the quadratic loss for estimating the conditional

expectation. In section 3 we present the proposed CSD-SVM and its corresponding data-

dependent loss function. Section 4 contains the main theoretical results, including finite

sample bounds, consistency proofs and learning rates. In section 5 we illustrate the

estimation procedure and show that the solution has a closed form. Section 6 contains

the simulations. Concluding remarks are presented in section 7. The lengthier proofs

appear in Appendix A. The Matlab code for both the algorithm and for the simulations

can be found in the 7.
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2 Preliminaries

In this section we present the notations used throughout the paper. First we describe the

data setting and then we discuss briefly loss functions and risks.

Assume that the data consists of n i.i.d. random tripletsD = {(Z1, C1,∆1), . . . , (Zn, Cn,∆n)}.

The random vector Z is a vector of covariates that takes its values in a compact set

Z ⊂ Rd. The failure-time T is non-negative, the random variable C is the censoring time,

the indicator ∆ = 1{T ≤ C} is the current status indicator at time C, and is contained in

the interval [0, τ ] ≡ Y for some constant τ > 0. For example, in carcinogenicity testing,

an animal is sacrificed at a certain time point in order to determine presence or absence

of the tumor. In this example, T is the time from exposure to a carcinogen and until the

presence of a tumor, C is the time point at which the animal is sacrificed, and ∆ is the

current status indicator at time C (indicating whether the tumor has developed before

the censoring time, or not).

We now move to discuss a few definitions of loss functions and risks, following Steinwart

and Christmann (2008). Let(Z,A) be a measurable space and Y ⊂ R be a closed subset.

Then a loss function is any measurable function L from Z × Y × R to [0,∞).

Let L : Z × Y × R → [0,∞) be a loss function and P be a probability mea-

sure on Z × Y . For a measurable function f : Z 7→ R, the L-risk of f is defined by

RL,P (f) ≡ EP [L (Z, Y, f(Z))] =
∫
Z×Y L (z, y, f(z)) dP (z, y). A function f that achieves

the minimum L-risk is called a Bayes decision function and is denoted by f ∗, and the

minimal L-risk is called the Bayes risk and is denoted by R∗L,P . Finally, the empirical

L-risk is defined by RL,D (f) = 1
n

n∑
i=1

L(zi, yi, f(zi)).

For example, it is well known (see, for example, Hastie et al., 2009) that the conditional

expectation is the Bayes decision function with respect to the quadratic loss.
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3 Support Vector Machines for Current Status Data

Let H be a reproducing kernel Hilbert space (RKHS) of functions from Z to R, where an

RKHS is a function space that can be characterized by some kernel function k : Z ×Z 7→

R. By definition, if k is a universal kernel, then H is dense in the space of continuous

functions on Z, C(Z) (see, for example, Steinwart and Christmann 2008, Definition 4.52).

Let us fix such an RKHSH and denote its norm by ‖·‖H and let {λn} > 0 be some sequence

of regularization constants. An SVM decision function for uncensored data is defined by:

fD,λn = arg min f∈Hλn‖f‖2
H +

1

n

n∑
i=1

L(Zi, Ti, f(Zi)) .

We recall that current status data consists of n independent and identically-distributed

random triplets D = {(Z1, C1,∆1), . . . , (Zn, Cn,∆n)}. Let F (·|Z = z) and G(·|Z = z)

be the cumulative distribution functions of the failure time and censoring, respectively,

given the covariates Z = z. Let g(·|Z = z) be the density of G(·|Z = z). For current

status data, we introduce the following identity between risks, following van der Laan and

Robins (1998). We extend this notion and incorporate loss functions and covariates in

the following identity. Let L : Y ×R 7→ [0,∞) be a loss function differentiable in the first

variable. Let ` : Y × R 7→ R be the derivative of L with respect to the first variable.

We would like to find the minimizer of RL,P (f) over a set H of functions f . Note that

RL,P (f) ≡EZET |ZL(T, f(Z))

=EZ

[∫ τ

0

L(t, f(Z))dF (t|Z)

]
=EZ

[∫ τ

0

`(t, f(Z))(1− F (t|Z))dt− L(t, f(Z))(1− F (t|Z))|τ0
]

=EZ

[∫ τ

0

`(t, f(Z))(1− F (t|Z))dt

]
+ E[L(0, f(Z))] ,

where the equality before last follows from integration by parts. Note also that (1−∆) =
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1{T > C} and thus

E

[
(1−∆)`(C, f(Z))

g(C|Z)

]
=EZ,T

[
EC

[
1{T > C}`(C, f(Z))

g(C|Z)

∣∣∣∣Z = z, T = t

]]
=EZ,T

[∫ τ

0

1{t > c}`(c, f(z))g(c|z)

g(c|z)
dc

]
=EZ,T

[∫ τ

0

1{t > c}`(c, f(z))dc

]
=EZ

[∫ τ

0

`(c, f(z))

∫ τ

0

1{t > c}dF (t|z)dc

]
=EZ

[∫ τ

0

`(c, f(z))(1− F (c|z))dc

]
.

This shows that the risk can be represented as the sum of two terms

E

[
(1−∆)`(C, f(Z))

g(C|Z)

]
+ E[L(0, f(Z))].

Hence, in order to estimate the minimizer of RL,P (f), one can minimize a regularized

version of the empirical risk with respect to the data-dependent loss function

Ln(D, (Z,C,∆, s)) =
(1−∆)`(C, s)

g(C|Z)
+ L(0, s) .

Note that this function need not be convex nor a loss function. For the quadratic loss

function, our data-dependent loss function becomes

Ln(D, (Z,C,∆, s)) =
(1−∆)2(C − s)

g(C|Z)
+ (s)2 .

Note that this function is convex but not necessarily a loss function since it can obtain

negative values. In order to ensure positivity we add a constant term that does not depend

on f , and so our loss becomes L̃n(D, (Z,C,∆, f(Z))) = (1−∆)2(C−f(Z))
ĝ(C|Z)

+(f(Z))2 +a, where

for a fixed dataset of length n, a = max
1≤i≤n

{
(1−∆i)

(ĝ(Ci|Zi))2

}
. Note that this additional term will

not effect the optimization (since L̃n is just a shift by a constant of Ln) and thus will be

neglected here after.

In order to implement this result into the SVM framework, we propose to define the

CSD-SVM decision function for current status data by
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f cD,λ = arg min f∈Hλ‖f‖2
H +

1

n

n∑
i=1

[
(1−∆i)2(Ci − f(Zi))

g(Ci|Zi)
+ (f(Zi))

2

]
. (1)

Note that if the censoring mechanism is not known, we can replace the density g with

its estimate ĝ; in this case our loss function becomes Ln(D, (Z,C,∆, s)) = (1−∆)2(C−s)
ĝ(C|Z)

+

(s)2 and the SVM decision function is

f cD,λ = arg min f∈Hλ‖f‖2
H +

1

n

n∑
i=1

[
(1−∆i)2(Ci − f(Zi))

ĝ(Ci|Zi)
+ (f(Zi))

2

]

(note the use of ĝ instead of g in the denominator).

We note that for current status data, the assumption of some knowledge of the censor-

ing distribution is reasonable, for example, when it is chosen by the researcher (Jewell and

van der Laan, 2004). In other cases, the density can be estimated using either parametric

or nonparametric density estimation techniques such as kernel estimates. It should be

noted that the censoring variable itself is not censored and thus simple density estimation

techniques can be used in order to estimate the density g.
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4 Theoretical Results

In this section we prove consistency of the CSD-SVM learning method for a large family

of probability measures and construct learning rates. We first assume that the censoring

mechanism is known, and thus the true density of the censoring variable g is known.

Using this assumption, and some additional conditions, we bound the difference between

the risk of the CSD-SVM decision function and the Bayes risk in order to form finite

sample bounds. We use this result, together with oracle inequalities, to show that the

CSD-SVM converges in probability to the Bayes risk. That is, we demonstrate that for

a very large family of probability measures, the CSD-SVM learning method is consistent.

We then consider the case in which the censoring mechanism is not known and thus

the density g needs to be estimated. We estimate the density g using nonparametric

kernel density estimation and develop a novel finite sample bound. We use this bound to

prove that the CSD-SVM is consistent even when the censoring distribution is not known.

Finally we construct learning rates for the CSD-SVM learning method for both g known

and unknown.

Definition 1. Let L(y, s) = (y−s)2
τ2

be the normalized quadratic loss, let l(y, s) = 2(y−s)
τ2

be

its derivative with respect to the first variable, and let Ln(D, (Z,C,∆, s)) = 1
τ2

(
(1−∆)2(C−s)

g(C|Z)
+ s2

)
be the data-dependent version of this loss.

For simplicity, we use the normalized version of the quadratic loss.

Since both L and l are convex functions with respect to s, then for any compact set

S = [−S, S] ⊂ R, Both L and l are bounded and Lipschitz continuous with constants cL

and cl that depend on S.

Remark 1. L(y, 0) ≤ 1 for all y ∈ Y and `(y, s) ≤ B1 for all (y, s) ∈ Y × S and for

some constant B1 > 0.

We need the following assumptions:

(A1) The censoring time C is independent of the failure time T given Z.

(A2) C takes its values in the interval [0, τ ] and inf
z∈Z,c∈C

g (c|z) ≥ 2K > 0, for some K > 0

.

(A3) Z ⊂ Rd is compact .
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(A4) H is an RKHS of a continuous kernel k with ‖k‖∞ ≤ 1 .

Define the approximation error by A2(λ) = inf
f∈H

λ ‖f‖2
H +RL,P (f)−R∗L,P

Define B2 = cLλ
−1/2 + 1 and B = B1

2K
+B2, where B1 is defined in Remark 1.

4.1 Case I - The Censoring Density g is Known

In this section we develop finite sample bounds assuming that the censoring density g is

known.

Theorem 1. Assume that (A1)-(A4) hold. Then for fixed λ > 0, n ≥ 1, ε > 0, and

θ > 0, with probability not less than 1− e−θ

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P − A2(λ) ≤ B

√
2log(2N(

√
1
λ
BH ,‖·‖∞,ε))+2θ

n
+ 2clε

K
+ 4cLε

where N(λ−
1
2BH , ‖·‖∞ , ε) is the covering number of the ε−net of

√
1
λ
BH with respect

to supremum norm and where BH is the unit ball of H (for further details see Steinwart

and Christmann 2008) .

The proof of this theorem appears in Appendix A.1.

We now move to discuss consistency of the CSD-SVM learning method. By definition,

P -universal consistency means that for any ε > 0,

lim
n→∞

P (D ∈ (Z × Y)n : RL,P (fD,λn) ≤ R∗L,P + ε) = 1 (2)

where R∗L,P is the Bayes risk. Universal consistency means that (2) holds for all prob-

ability measures P on Z × Y . However, in survival analysis we have the problem of

identifiability and thus we will limit our discussion to probability measures that satisfy

some identification conditions. Let P be the set of all probablity measures that satisfy

assumptions (A1)-(A2). We say that a learning method is P-universal consistent when

(2) holds for all probability measures P ∈ P .

In order to show P-universal consistency, we utilize the finite sample bounds of The-

orem 1. The following assumption is also needed for proving P-universal consistency:

(A5) inf
f∈H
RL,P (f) = R∗L,P , for all probability measures P on Z × Y

Assumptio (A5) means that our RKHS H is rich enough to include the Bayes decision

function.
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Corollary 1. Assume the setting of Theorem 1 and that Assumptio (A5) holds. Let λn

be a sequence such that λn →
n→∞

0 and λnn →
n→∞

∞. Choose ε = n−ρ, for some ρ > 0. Then

the CSD-SVM learning method is P-universal consistent.

Proof. In Theorem 1 we showed that

λ ‖fD,λ‖2
H+RL,P (fD,λ)−R∗L,P−A2(λ) ≥ B

√√√√2log(2N(
√

1
λ
BH , ‖·‖∞ , ε)) + 2θ

n
+

2clε

K
+4cLε,

with probability not greater than e−θ.

Choose λ = λn; from Assumption (A5) together with Lemma 5.15 of Steinwart and

Christmann (2008, 5.15), A2(λn) converges to zero as n converges to infinity. Clearly

B

√√√√2log(2N(
√

1
λ
BH , ‖·‖∞ , ε)) + 2τ

n
−→
n→∞

0.

Finally, from the choice of ε, it follows that both 2clε
K

and 4cLε converge to 0 as n→∞.

Hence for every fixed θ,

λn ‖fD,λn‖
2
H+RL,P (fD,λn)−R∗L,P ≤ A2(λn)+B

√√√√2log(2N(
√

1
λn
BH , ‖·‖∞ , ε)) + 2θ

n
+

2clε

K
+4cLε

with probability not less than 1-e−θ. The right hand side of this converges to 0 as n→∞,

which implies consistency (Steinwart and Christmann, 2008, Lemma 6.5). Since this holds

for all probability measures P ∈ P , we obtain P-universal consistency.

4.2 Case II - The Censoring Density g is Unknown

In this section we form finite sample bounds for the case in which the censoring density

is not known and needs to be estimated. We assume that the density of the censoring

variable is estimated using nonparametric kernel density estimation. In Lemma 1 we

construct finite sample bounds on the differnce between the estimated density ĝ and the

true density g. In Theorem 2 we utilize this bound to form finite sample bounds for the

CSD-SVM learning method.
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Definition 2. We say that K : R 7→ R (not to be confused with the kernel function k of

the RKHS H) is a kernel of order m, if the functions u 7→ ujK(u) , j = 0, 1, ...,m are

integrable and satisfy
∫∞
−∞K(u)du = 1 and

∫∞
−∞ u

jK(u)du = 0, j = 1, ...,m.

Definition 3. The Hölder class
∑

(β,L) of functions f : R 7→ R is the set of m =

bβc times differentiable functions whose derivative f (m) satisfies
∣∣f (m)(x)− f (m)(x′)

∣∣ ≤
L |x− x′|β−m for some constant L > 0.

Lemma 1. Let K : R 7→ R be a kernel function of order m satisfying
∫∞
−∞K

2(u)du <∞

and define ĝ(x) = 1
hn

∑n
i=1K

(
Ci−x
h

)
where h is the bandwidth. Suppose that the true

density g satisfies g(c) ≤ gmax < ∞. Let us also assume that g(c) belongs to the Hölder

class
∑

(β,L). Finally, assume that
∫∞
−∞ |u|

β |K(u)| du <∞. Then for any ε > 0,

Pr

(
1

n

n∑
i=1

|ĝ(ci)− g(ci)| > ε+ C2 · hβ
)
≤
√

C1

nhε2
,

where C1 = gmax
∫∞
−∞K

2 (v) dv and C2 = L|π|β−m
m!

∫∞
−∞ |K (v)| |v|β dv are constants, and

for some π ∈ [0, 1].

The proof of the lemma is based on Tsybakov (2008, Propositions 1.1 and 1.2) together

with basic concentration inequalities; the proof can be found in Appendix A.2.

We would like to choose h that minimizes the sum of C2 · hβ and
√

C1

nhε2
. Define

U(h) = C2 · hβ +
√

C1

nhε2
. Taking the deivative of U with respect to h and setting to zero

yields:

dU(h)

dh
= βC2h

β−1 − 1

2

√
C1

nε2
h−

3
2 = 0

⇔ h =

( √
C1

2βC2ε
√
n

) 2
2β+1

= κ
(
n−

1
2

) 2
2β+1 ∝ n−

1
2β+1 (3)

where κ = (C1)
1

2β+1

(2βC2ε)
2

2β+1
. It can be shown that the second derivative of U is positive

which guarentees that the zero of the derivative above is the minimizer. After substituting

h = κn−
1

2β+1 in U , we obtain that U(κn−
1

2β+1 ) ∝ n−
β

2β+1 .

Choosing ε > 0 such that ln(ε) = 2β+1
2β

θ + 1
2
ln(C1)− 1

2
ln(n) + 1

2β
ln(2βC2) and substi-
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tuting h = κn−
1

2β+1 , we obtain by Lemma 1 that

Pr

(
1

n

n∑
i=1

|ĝ(ci)− g(ci)| > ε+ C2κ
βn−

β
2β+1

)
≤

√
C1n

1
2β+1

κnε2
= e−θ.

We now move to construct finite sample bounds for the CSD-SVM learning method

when g is unknown using the above lemma. We assume that ĝ is the kernel density

estimate of g, such that the conditions of Lemma 1 hold.

Theorem 2. Assume that (A1)-(A4) hold. Assume the setting of Lemma 1 and that

inf
z∈Z,c∈C

ĝ (c|z) ≥ K > 0, for some K > 0. Choose α such that

0 < (C1)
1
2 (2βC2)

1
2β n−

1
2 < α < 2 (C1)

1
2 (2βC2)

1
2β n−

1
2

and

ln(α) =
2β + 1

2β
θ +

1

2
ln(C1)− 1

2
ln(n) +

1

2β
ln(2βC2).

Then for fixed λ > 0, θ > 0, n ≥ 1, ε > 0, we have with probability not less than 1− 2e−θ

that

λ ‖fD,λ‖2
H+RL,P (fD,λ)−R∗L,P−A2(λ) ≤ B

√√√√2log(2N(
√

1
λ
BH , ‖·‖∞ , ε)) + 2θ

n
+

3clε

K
+4cLε+2η

where η ≡ B1(α+C2·hβ)
2K2 .

The proof of the theorem appears in Appendix A.3.

Using the above theorem we show that under some conditions, the CSD-SVM decision

function converges in probability to the conditional expectation.

Corollary 2. Let λn be a sequence such that λn →
n→∞

0 and that λnn →
n→∞

∞. Choose

ε = n−ρ, for some ρ > 0. Assume the setting of Theorem 3, then the CSD-SVM learning

method is consistent.

The proof of the corollary is derived similarly to the proof of Corollary 1 (consistency

- case I).

12



4.3 Learning rates

In this section we derive learning rates for cases I and II.

Definition 4. A learning method is said to learn with rate εn ⊂ (0, 1] that converges to

zero if for all n ≥ 1 and all τ ∈ (0, 1], Pr
(
RL,P (fD)−R∗L,P ≤ cP cτ εn

)
≥ 1 − τ , where

cτ and cP are constants such that cτ ∈ [1,∞) and cP > 0.

Theorem 3. Assume that (A1)-(A4) hold. Choose 0 < λ < 1 and assume that there exist

constants a ≥ 1, p > 0 such that log(N(BH , ‖·‖∞ , ε)) ≤ aε−2p. Additionally, assume that

there exist constants c > 0, γ ∈ (0, 1] such that A2(λ) ≤ cλγ. Choose λn =n−
1

(1+p)(2γ+1) .

Then

(i) If g is known, the learning rate is given by n−
γ

(1+p)(2γ+1) .

(ii) If g is not known and the setup of Theorem 2 holds, then the leraning rate is given

by n−min( γ
(1+p)(2γ+1)

, β
2β+1).

The proof of the theorem appears in Appendix A.4.

13



5 Estimation of the Failure Time Expectation

In this section we demonstrate how to compute the CSD-SVM decision function with

respect to the quadratic loss. In addition we show that the solution has a closed form.

Since Ln(D, (Z,C,∆, s)) = (1−∆)2(C−s)
g(C|Z)

+ s2 is convex, then for any RKHS H over Z and

for all λ > 0, it follows that there exists a unique SVM solution fD,λ. In addition, by the

Representer Theorem (Steinwart and Christmann, 2008, 5.5), there exists constants α =

(α1, ..., αn)T ∈ Rn such that fD,λ(z) =
∑n

i=1 αik(z, zi), z ∈ Z. Hence the optimization

problem reduces to estimation of the vector α. A more general approach will also include

an intercept term b such that fD,λ(z) =
∑n

i=1 αik(z, zi) + b.

Let Φ : Z → H be the feature map that maps the input data into an RKHS H such

that 〈Φ(zj),Φ(z)〉 = k(zj, z). Our goal is to find a function f cD,λ that is the solution of

(1). From the Representer Theorem, there exists a unique SVM decision function of the

form fD,λ =
∑n

j=1 ᾱjΦ(zj) + b.

Define for each α ∈ Rn the function w(α) by w(α) =
∑n

j=1 αjΦ(zj).

Then for Cλ = 1
nλ

, the optimization problem reduces to:

min
w,r∈Rn

Cλ
2

n∑
i=1

[
(1−∆i)2ri
ĝ(Ci|Zi)

+ (ti − ri)2

]
+

1

2
‖w‖2

such that ri = ci − f(zi)

where f(zi) ≡< w,Φ(zi) > +b.

This is an optimization problem under equality constraints and hence we will use the

method of Lagrange multipliers. The Lagrangian is given by

LagrangeP =
Cλ
2

n∑
i=1

[
(1−∆i)2ri
ĝ(Ci|Zi)

+ (ci − ri)2

]
+

1

2
‖w‖2+

n∑
i=1

αi (ci− < w,Φ(zi) > −b− ri)

Minimizing the original problem LagrangeP yields the following conditions for opti-

mality:

w =
n∑
i=1

αiΦ(zi)

14



ri =
αi
Cλ

+ ci −
(1−∆i)

ĝ(Ci|Zi)

n∑
i=1

αi = 0.

Since these are equality constraints in the dual formulation, we can substitute them into

LagrangeP to obtain the dual problem LagrangeD. By the strong duality theorem (Bazaraa

et al., 2006, Theorem 6.2.4), the solution of the dual problem is equivalent to the solution

of the primal problem.

LagrangeD =
Cλ
2

n∑
i=1

(1−∆i)2
(
αi
Cλ

+ ci − (1−∆i)
2ĝ(Ci|Zi)

)
ĝ(Ci|Zi)

+

(
(1−∆i)

2ĝ(Ci|Zi)
− αi
Cλ

)2


+
1

2

n∑
i=1

n∑
j=1

αiαjk(zi, zj)

+
n∑
i=1

αi

(
ci −

n∑
j=1

αjk(zi, zj)− b−
(
αi
Cλ

+ ci −
(1−∆i)

2ĝ(Ci|Zi)

))
.

Some calculations yield:

LagrangeD =
n∑
i=1

(1−∆i)

ĝ(Ci|Zi)
αi −

1

2

n∑
i=1

n∑
j=1

αiαjk(zi, zj)−
1

2

n∑
i=1

α2
i

Cλ

=vTα− 1

2
αT
(
K +

1

Cλ
I

)
α

subject to the constraint
∑n

i=1 αi = 0, and where vT =
(

(1−∆1)
ĝ(C1|Z1)

, ..., (1−∆n)
ĝ(Cn|Zn)

)
.

This is a quadratic programming problem subject to equality constraints. Its solution

satisfies:



α1

α2

.

.

.

αn

b


=



K11 + 1
Cλ

K12 . . . K1n 1

K21 K22 + 1
Cλ

. . . K2n 1

. . . . .

. . . . .

. . . . .

Kn1 Kn2 . . . Knn + 1
Cλ

1

1 1 . . . 1 0



−1

.



v1

v2

.

.

.

vn

0


.
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Note that if we do not require an intercept term, the solution is α =
(
K + 1

Cλ
I
)−1

v.

It is interesting to note that this solution is equivalent to the solution attained by the

Representer Theorem for differentiable loss functions: αi = −1
2λn

L
′
(xi, yi, fD,λ(xi)) (Stein-

wart and Christmann, 2008, Section 5.2). In our case, Ln(Ci, f(Zi)) = (1−∆i)2(Ci−f(Zi))
ĝ(Ci|Zi) +

(f(Zi))
2; hence αi = −1

2λn
L
′
n (Ci, f(Zi)) = −1

2λn

(
(1−∆i)(−2)
ĝ(Ci|Zi) + 2f(Zi)

)
and since f(Zi) =∑n

j=1 αjk(zi, zj), we see that α = 1
λn
v − 1

λn
Kα, i.e., α =

(
K + 1

Cλ
I
)−1

v.
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6 Simulation Study

In this section we test the CSD-SVM learning method on simulated data and compare

its performance to current state of the art. We construct four different data-generating

mechanisms, including one-dimensional and multi-dimentional settings. For each data

type, we compute the difference between the CSD-SVM decision function and the true

expectation. We compare this result to results obtained by the Cox model and by the

AFT model. As a reference, we compare all these methods to the Bayes risk.

For each data setting, we considered two cases;: (i) the censoring density g is known;

and (ii) the censoring density is not known. For the second setting, the distribution of

the censoring variable was estimated using nonparametric kernel density estimation with

a normal kernel. The code was written in Matlab, using the Spider library1. In order to

fit the Cox model to current status data, we downloaded the ‘ICsurv’ R package (Wang,

2014). In this package, monotone splines are used to estimate the cumulative baseline

hazard function, and the model parameters are then chosen via the EM algorithm. We

chose the most commonly used cubic splines. To choose the number and locations of the

knots, we followed Ramsay (1988) and McMahan et al. (2013) who both suggested using a

fixed small number of knots and thus we placed the knots evenly at the quantiles. For the

AFT model, we used the ‘surv reg’ function in the ‘Survival’ R package (Therneau and

Lumley, 2014). In order to call R through Matlab, we installed the R package rscproxy

(Baier, 2012), installed the statconnDCOM server2, and download the Matlab R-Link

toolbox (Henson, 2004). For the kernel of the RKHS H, we used both a linear kernel

and a Gaussian RBF kernel k(xi, xj) = exp
(
‖xi−xj‖22

2σ2

)
, where σ and Cλ were chosen using

5-fold cross-validation. The code for the algorithm and for the simulations is available for

download; a link to the code can be found in the 7.

We consider the following four failure time distributions, corresponding to the four

different data-generating mechanisms: (1) Weibull, (2) Multi-Weibull, (3) Multi-Log-

Normal, and (4) an additional example where the failure time expectation is triangle

shaped. We present below the CSD-SVM risks for each case and compare them to risks

obtained by other methods. The risks are based on 100 iterations per sample size. The

1The Spider library for Matlab can be downloaded from http://www.kyb.tuebingen.mpg.de/bs/people/spider/
2Baier Thomas, & Neuwirth Erich (2007). Excel :: COM :: R. Computational Statistics, Volume 22,

Number 1/April 2007. Physica Verlag.
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Figure 1: Weibull failure time distribution. The Bayes risk is the dashed black line and the
boxlpots of the following risks are compared: CSD-SVM with an RBF kernel, CSD-SVM
with a linear kernel, Cox and AFT, for sample sizes n = 50, 100, 200, 400, 800.

Bayes risk is also plotted as a reference.

In Setting 1 (Weibull failure-time), the covariates Z are generated uniformly on [0, 1],

the censoring variables C is generated uniformly on [0, τ ], and the failure time T is gen-

erated from a Weibull distribution with parameters scale = e−
1
2
Z , shape = 2. The failure

time was then truncated at τ = 1.

Figure 1 compares the results obtained by the CSD-SVM to results achieved by the

Cox model and by the AFT model, for different sample sizes. It should be noted that

both the PH and the AFT assumption hold for the Weibull failure time distribution.

In particular, when the PH assumption holds, estimation based on the Cox regression

is consistent and efficient; hence, when the PH assumption holds, we will use the Cox

regression as a benchmark. Figure 1 shows that when g is known, even though the CSD-

SVM does not use the PH assumption or the AFT assumption, the results are comparable

to those of the Cox regression, and are better than the AFT estimates, especially for larger

sample sizes. However, when g is not known, the Cox model produces the smallest risks,

but its superiority reduces as the sample size grows. This coincides with the fact that

when g is not known, the learning rate of the CSD-SVM is slower.

In Setting 2 (Multi-Weibull failure-time), the covariates Z are generated uniformly
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Figure 2: Multi-Weibull failure time distribution. The Bayes risk is the dashed black
line and the boxlpots of the following risks are compared: the CSD-SVM with an
RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes n =
50, 100, 200, 400, 800.

on [0, 1]10, and the censoring variable C is generated uniformly on [0, τ ], as in setting

1. The failure time T is generated from a Weibull distribution with parameters scale =

−0.5Z1 + 2Z2 − Z3, shape = 2. The failure time was then truncated at τ = 2. Note that

this model depends only on the first three variables. In Figure 2, boxplots of risks are

presented. Figure 2 illustrates that the CSD-SVM with a linear kernel is superior to the

other methods, for all sample sizes and for both the cases g known and uknown. However,

since the data may be sparse in the feature space, the CSD-SVM with an RBF kernel

might require a larger sample size to converge.

In Setting 3 (Multi-Log-Normal), the covariates Z are generated uniformly on [0, 1]10,

C was generated as before and the failure time T was generated from a Log-Normal

distribution with parameters µ = 1
2
(0.3Z1 + 0.5Z2 + 0.2Z3), σ = 1. The failure time

was then truncated at τ = 7. Figure 3 presents the risks of the compared methods.

This example illustrates that for small sample sizes, the CSD-SVM risks are significantly

superior and converge quickly to the Bayes risk. As the sample size grows, the AFT also

converges to the Bayes risk whereas the Cox estimates does not, as can be seen by the

very high risks they produce. Note that for the Log-Normal distribution, even though
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Figure 3: Multi-LogNormal failure time distribution. The Bayes risk is the dashed
black line and the boxlpots of the following risks are compared: the CSD-SVM with
an RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes
n = 50, 100, 200, 400, 800.

the AFT assumption is correct, the CSD-SVM manages to produce better or equivalent

results.

In Setting 4, we considered a non-smooth conditional expectation function in the shape

of a triangle. The covariates Z are generated uniformly on [0, 1], C is generated uniformly

on [0, τ ], and T was generated according to the following

T =


4 + 6 · Z + ε , Z ≤ 0.5

10− 6 · Z + ε , Z > 0.5

, where ε ∼ N(0, 1).

The failure time was then truncated at at τ = 8.

In Figure 4, the boxplots of risks are presented. As can be seen, the CSD-SVM with

an RBF kernel is superior in both cases, for sufficently large sample sizes.

To illustrate the flexibility of the CSD-SVM, we also present a graphical representation

of the true conditional expectation and its estimates, as a function of the covariates.

Figure 5 compares the true expectation to the computed estimates for the case that g is

known; these estimates are based on the first iteration. As can be seen, the CSD-SVM

with an RBF kernel produces the most superior results.
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Figure 4: Triangle shaped failure time expectation. The Bayes risk is the dashed
black line and the boxlpots of the following risks are compared: the CSD-SVM with
an RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes
n = 50, 100, 200, 400, 800.

Figure 5: Triangle shaped failure time expectation, case I (g is known). The true ex-
pectation is the blue line. The following estimates are compared: the CSD-SVM with
an RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes
n = 50, 100, 400, 800.

To summarize, Figures 1-5 showed that the CSD-SVM is comparable to other known

methods for estimating the failure time distribution with current status data, and in
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certain cases is even better. Specifically, we found that the CSD-SVM with an appropriate

kernel was superior in three out of the four examples, especially when the true density g

is known. It should be noted that even when the assumptions of the other models were

true the CSD-SVM estimates were comparable. Additionally, when these assumptions

fail to hold, the CSD-SVM estimates were generally better. The main advantage of the

proposed SVM approach is that it does not assume any parametric form and thus may

be superior, especially when the assumptions of other models fail to hold. Additionally,

it seems that the CSD-SVM can perform well in higher dimensions.
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7 Concluding Remarks

We proposed an SVM approach for estimation of the failure time expectation, studied

its theoretical properties and presented a simulation study. We believe this work demon-

strates an important approach in applying machine learning techniques to current status

data. However, many open questions remain and many possible generalizations exist.

First, note that we only studied the problem of estimating the failure time expectation

and not other distribution related quantities. Further work needs to be done in order to

extend the SVM approach to other estimation problems with current status data. Second,

we assumed that the censoring is independent of the failure time given the covariates and

that the censoring density is positive given the covariates over the entire observed time

range. It would be worthwhile to study the consequences of violation of some of these

assumptions. Third, it could be interesting to extend this work to other censored data for-

mats such as interval censoring. We believe that further development and generalization

of SVM learning methods for different types of censored data is of great interest.

Supplementary Material

The Matlab code is available for download and can be found at http://stat.haifa.ac.

il/~ygoldberg/research.html. Please read the README.pdf for details on the files in

this folder.
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A Proofs

A.1 Proof of Theorem 1

Proof. Since Ln(D, (Z,C,∆, s)) = 1
τ2

(
(1−∆)2(C−s)

g(C|Z)
+ s2

)
is convex, it implies that there

exists a unique SVM solution (see Steinwart and Christmann, 2008, Section 5.1). For all

distributions Q on Z × Y , we define the SVM decision function by fQ,λ = inf
f∈H

λ ‖f‖2
H +

RL,Q(f). We note that for an RKHS H of a continuous kernel k with ‖k‖∞ ≤ 1,

‖fQ,λ‖∞ ≤ ‖k‖∞ ‖fQ,λ‖H ≤ ‖fQ,λ‖H .

Hence,

λ ‖fQ,λ‖2
H ≤ λ ‖fQ,λ‖2

H+RL,Q(fQ,λ) = inf
f∈H

λ ‖f‖2
H+RL,Q(f) ≤ λ ‖0‖2

H+RL,Q(0) = RL,Q(0),

Hence ‖fQ,λ‖∞ ≤ ‖fQ,λ‖H ≤
√

RL,Q(0)

λ
for all f ∈ H. By Remark 1, L(y, 0) ≤ 1 for all

y ∈ Y and so we conclude that RL,Q(0) ≤ 1 and thus ‖fQ,λ‖∞ ≤ ‖fQ,λ‖H ≤
√

1
λ

for all

distributions Q on Z × Y .

Recall that the unit ball of H is denoted by BH and its closure by BH ; since‖fP,λ‖H ≤√
1
λ

we can write f ∈
√

1
λ
BH . Since Z ⊂ Rd is compact, it implies that the ‖·‖∞ −

closure BH of the unit ball BH is compact in `∞(Z) (see Steinwart and Christmann,

2008, Corollary 4.31).

Since fD,λ minimizes λ ‖f‖2
H +RL,D(f),

λ ‖fD,λ‖2
H +RL,D(fD,λ) ≤ λ ‖fP,λ‖2

H +RL,D(fP,λ).

Recall that the approximation error is defined by A2(λ) = inf
f∈H

λ ‖f‖2
H + RL,P (f)− R∗L,P ,

and thus, as in Steinwart and Christmann (2008, Eq. 6.18),
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λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P − A2(λ)

=λ ‖fD,λ‖2
H +RL,P (fD,λ)− λ ‖fP,λ‖2

H −RL,P (fP,λ)

=λ ‖fD,λ‖2
H +RL,D(fD,λ)−RL,D(fD,λ) +RL,P (fD,λ)− λ ‖fP,λ‖2

H −RL,P (fP,λ)

≤λ ‖fP,λ‖2
H +RL,D(fP,λ)−RL,D(fD,λ) +RL,P (fD,λ)− λ ‖fP,λ‖2

H −RL,P (fP,λ)

=RL,D(fP,λ)−RL,D(fD,λ) +RL,P (fD,λ)−RL,P (fP,λ)

≤2 sup
‖f‖H≤

√
1
λ

|RL,P (f)−RL,D(f)|.

That is,

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P − A2(λ) ≤ 2 sup

‖f‖H≤
√

1
λ

|RL,P (f)−RL,D(f)| (4)

Note that since L is Lipschitz continuous, |L(y, s)−L(y, s′)| ≤ cL|s−s′| for all s, s′ ∈ S.

From the discussion above, we are only interested in bounded functions f ∈
√

1
λ
BH .

Then for all f ∈
√

1
λ
BH we have

|L(y, f(z))|≤|L(y, f(z))− L(y, 0)|+ L(y, 0) ≤ cL|f(z)|+ 1 ≤ cLλ
−1/2 + 1 ≡ B2

thus we obtain that for functions f ∈
√

1
λ
BH , the loss L(y, f(z)) is bounded.

For any ε > 0, let Fε be an ε−net of
√

1
λ
BH . Since BH is compact, then the cardinality

of the ε− net is

|Fε| = N

(√
1

λ
BH , ‖·‖∞ , ε

)
= N(BH , ‖·‖∞ ,

√
λε) <∞.

Thus for every f ∈
√

1
λ
BH , there exists a function h ∈ Fε with ‖f − h‖ ≤ ε, and thus

|RL,P (f)−RL,D(f)| ≤ |RL,P (f)−RL,P (h)|+|RL,P (h)−RL,D(h)|+|RL,D(h)−RL,D(f)| ≡ An+Bn+Cn

(5)

First we will bound Cn;
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Cn ≡ |RL,D(h)−RL,D(f)|

≤

∣∣∣∣∣ 1n
n∑
i=1

[
(1−∆i)`(Ci, h(Zi))

g(Ci|Zi)

]
− 1

n

n∑
i=1

[
(1−∆i)`(Ci, f(Zi))

g(Ci|Zi)

]∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[L(0, h(Zi))]−
1

n

n∑
i=1

[L(0, f(Zi))]

∣∣∣∣∣
≡Cn,1 + Cn,2,

where

Cn,1 ≡

∣∣∣∣∣ 1n
n∑
i=1

[
(1−∆i)`(Ci, h(Zi))

g(Ci|Zi)
− (1−∆i)`(Ci, f(Zi))

g(Ci|Zi)

]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

[
(1−∆i)

g(Ci|Zi)
(`(Ci, h(Zi))− `(Ci, f(Zi)))

]∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

[
1

g(Ci|Zi)
(`(Ci, h(Zi))− `(Ci, f(Zi)))

]∣∣∣∣∣
≤ 1

2K

∣∣∣∣∣ 1n
n∑
i=1

[`(Ci, h(Zi))− `(Ci, f(Zi))]

∣∣∣∣∣ ≤ 1

2nK

n∑
i=1

|`(Ci, h(Zi))− `(Ci, f(Zi))|

≤ 1

2nK

n∑
i=1

cl|h(Zi)− f(Zi)| ≤
1

2nK

n∑
i=1

clε =
clε

2K
,

and where

Cn,2 ≡

∣∣∣∣∣ 1n
n∑
i=1

[L(0, h(Zi))− L(0, f(Zi))]

∣∣∣∣∣
≤ 1

n

n∑
i=1

|L(0, h(Zi))− L(0, f(Zi))|

≤ 1

n

n∑
i=1

cL|h(Zi)− f(Zi)| ≤
1

n

n∑
i=1

[cLε] = cLε

So we were able to bound Cn by clε
2K

+ cLε.

Similarly, using to the property that E [α] = α for any constant α, it can be shown

that An ≤ clε
2K

+ cLε.

As an interim summary, we showed that
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sup
f∈
√

1
λ
BH

|RL,P (f)−RL,D(f)| ≤ sup
h∈Fε
|RL,P (h)−RL,D(h)|︸ ︷︷ ︸

=Bn

+
1

K
clε+ 2cLε. (6)

Recall that the loss L(y, f(z)) is bounded by B2 and that by Remark 1, `(y, s) ≤ B1.

We note that

(1−∆)`(C, h(Z))

g(C|Z)
+ L(0, h(Z)) ≤ `(C, h(Z))

g(C|Z)
+ L(0, h(Z)) ≤ B1

2K
+B2 ≡ B

Combining this with equation (4), we obtain that

Pr

(
λ ‖fD,λ‖2

H +RL,P (fD,λ)−R∗L,P − A2(λ) ≥ B

√
2η

n
+

2clε

K
+ 4cLε

)

≤Pr

2 sup
‖f‖H≤

√
1
λ

|RL,P (f)−RL,D(f)| ≥ B

√
2η

n
+

2clε

K
+ 4cLε

 (by eq 4)

≤Pr

(
2

(
sup
h∈Fε
|RL,P (h)−RL,D(h)|+ 1

K
clε+ 2cLε

)
≥ B

√
2η

n
+

2clε

K
+ 4cLε

)
(by eq. 6)

=Pr

(
2

(
sup
h∈Fε

Bn +
1

K
clε+ 2cLε

)
≥ B

√
2η

n
+

2clε

K
+ 4cLε

)

=Pr

(
sup
h∈Fε

Bn ≥ B

√
η

2n

)
= Pr

(
sup
h∈Fε
|RL,P (h)−RL,D(h)| ≥ B

√
η

2n

)
.

By the union bound, the last expression is bounded by

∑
h∈Fε

Pr

(
|RL,P (h)−RL,D(h)| ≥ B

√
η

2n

)
,

which can then be bounded again by 2|Fε|e−η, using Hoeffdings inequality (Steinwart

and Christmann, 2008, Theorem 6.10); where Fε is an ε-net of
√

1
λ
BH with cardinality

|Fε| = N

(√
1

λ
BH , ‖·‖∞ , ε

)
<∞.
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Define η = log(2|Fε|) + θ, then

Pr

(
λ ‖fD,λ‖2

H +RL,P (fD,λ)−R∗L,P − A2(λ) ≥ B

√
2(log(2|Fε|) + θ)

n
+

2clε

K
+ 4cLε

)
≤ e−θ,

which concludes the proof.

A.2 Proof of Lemma 1

Proof. Note that

1

n

n∑
i=1

|ĝ(ci)− g(ci)| ≤

≤ 1

n

n∑
i=1

|ĝ(ci)− E [ĝ(ci)]|+
1

n

n∑
i=1

|E [ĝ(ci)]− g(ci)| ≡ A+B

As in Tsybakov (2008, Proposition 1.1), define ηi(c) = K
(
Ci−c
h

)
− Eg

[
K
(
Ci−c
h

)]
.

Then ηi(c), for i = 1, ..., n are i.i.d. random variables with zero mean and with variance:

Var [ηi(c)] = Eg
[
(ηi(c))

2] = Eg

[(
K

(
Ci − c
h

)
− Eg

[
K

(
Ci − c
h

)])2
]
≤ Eg

[
K2

(
Ci − c
h

)]
=

∫
u

K2

(
u− c
h

)
g(u)du ≤ gmax

∫
u

K2

(
u− c
h

)
du = gmax

∫
v

K2 (v) dv = C1h

where the equality before last follows from change of variables and where C1 = gmax
∫
v
K2 (v) dv.

Thus Var(ĝ(c)) = Eg

[(
1
nh

∑n
i=1 ηi(c)

)2
]

= 1
nh2

Eg [η2
1(c)] ≤ C1h

nh2
= C1

nh
.

By the Cauchy–Schwarz inequality we have that

E [|ĝ(c)− E [ĝ(c)]|] ≤
√
E
[
|ĝ(c)− E [ĝ(c)]|2

]
=
√
V (ĝ(c)).

Hence E [|ĝ(c)− E [ĝ(c)]|] ≤
√

C1

nh
.Therfore, by Markov’s inequality,

Pr(A > ε) = Pr

(
1

n

n∑
i=1

|ĝ(ci)− E [ĝ(ci)]| > ε

)
≤ E [|ĝ(c)− E [ĝ(c)]|]

ε
≤
√

C1

nhε2
.
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For the second term, as in Tsybakov (2008, Proposition 1.2), we have that

B ≡ 1

n

n∑
i=1

|E [ĝ(ci)]− g(ci)| ≤ C2h
β

where C2 = L|π|β−m
m!

∫∞
−∞ |K (v)| |v|β dv <∞, and for some π ∈ [0, 1].

In conclusion, we showed that

Pr

(
1

n

n∑
i=1

|ĝ(ci)− g(ci)| > ε+ C2 · hβ
)

≤Pr

(
1

n

n∑
i=1

|ĝ(ci)− E [ĝ(ci)]|+
1

n

n∑
i=1

|E [ĝ(ci)]− g(ci)| > ε+ C2 · hβ
)

≤Pr

(
1

n

n∑
i=1

|ĝ(ci)− E [ĝ(ci)]|+ C2 · hβ > ε+ C2 · hβ
)

=Pr

(
1

n

n∑
i=1

|ĝ(ci)− E [ĝ(ci)]| > ε

)
≤
√

C1

nhε2

where h is the bandwidth.

A.3 Proof of Theorem 2

Proof. Note that the proof of this theorem is similar to the proof of of Theorem 1 and thus

we will only discuss the parts of the proof where they differ. As in Theorem 1, equation

5,

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P − A2(λ) ≤ 2 (An +Bn + Cn)

where

An ≡ |RL,P (f)−RL,P (v)|, Bn ≡ |RL,P (v)−RL,D(v)|, andwhere Cn ≡ |RL,D(v)−RL,D(f)|,

Since Andoes not depend on the data-set D, the same bound holds as in the proof of

Theorem 1, that is, An ≤ clε
2K

+ cLε.

We bound Cn as follows:
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Cn ≡ |RL,D(v)−RL,D(f)|

≤

∣∣∣∣∣ 1n
n∑
i=1

[
(1−∆i)`(Ci, v(Zi))

ĝ(Ci|Zi)

]
− 1

n

n∑
i=1

[
(1−∆i)`(Ci, f(Zi))

ĝ(Ci|Zi)

]∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[L(0, v(Zi))]−
1

n

n∑
i=1

[L(0, f(Zi))]

∣∣∣∣∣
≡Cn,1 + Cn,2

Using the same arguments as in Theorem 1, we can bound Cn by clε
K

+ cLε. Note that

the only difference is in the denominator of Cn,1 since 1
g
≤ 1

2K
and 1

ĝ
≤ 1

K
.

Recall that the loss L(y, f(z)) is bounded by B2. Define RL,D,g(v) by

RL,D,g(v) =
1

n

n∑
i=1

[
(1−∆i)`(Ci, v(Zi))

g(Ci|Zi)

]
+

1

n

n∑
i=1

[L(0, v(Zi))].

In other words, RL,D,g(v) is the empirical risk with the true censoring density function g.

We bound Bn as follows

Bn =|RL,P (v)−RL,D(v)|

≤ |RL,P (v)−RL,D,g(v)|+ |RL,D,g(v)−RL,D(v)| ≡ Bn,1 +Bn,2

where

(1−∆)`(C, v(Z))

g(C|Z)
+ L(0, v(Z)) ≤ `(C, v(Z))

g(C|Z)
+ L(0, v(Z)) ≤ B1

2K
+B2 = B

and where
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Bn,2 = |RL,D,g(v)−RL,D(v)| =

=

∣∣∣∣∣ 1n
n∑
i=1

[
(1−∆i)`(Ci, v(Zi))

g(Ci|Zi)

]
− 1

n

n∑
i=1

[
(1−∆i)`(Ci, v(Zi))

ĝ(Ci|Zi)

]∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

[
(1−∆i)`(Ci, v(Zi))

(
1

g(Ci|Zi)
− 1

ĝ(Ci|Zi)

)]∣∣∣∣∣
≤ 1

n

n∑
i=1

[∣∣∣∣`(Ci, v(Zi))

(
1

g(Ci|Zi)
− 1

ĝ(Ci|Zi)

)∣∣∣∣]
=
B1

n

n∑
i=1

[∣∣∣∣ ĝ(Ci|Zi)− g(Ci|Zi)
g(Ci|Zi)ĝ(Ci|Zi)

∣∣∣∣] ≤ B1

2K2n

n∑
i=1

[|ĝ(Ci|Zi)− g(Ci|Zi)|] .

Note that these inequalities hold for all functions v ∈ Fε ⊆ λ−1/2BH . We would like

to bound the last expression using Lemma 1. By equation 3, let h = κn−
1

2β+1 , choose α

such that

0 < (C1)
1
2 (2βC2)

1
2β n−

1
2 < α < 2 (C1)

1
2 (2βC2)

1
2β n−

1
2

and

ln(α) =
2β + 1

2β
θ +

1

2
ln(C1)− 1

2
ln(n) +

1

2β
ln(2βC2),

and let η =
B1(α+C2·hβ)

2K2 , then by Lemma 1

Pr(Bn,2 > η) ≤ Pr

(
B1

2K2n

n∑
i=1

[|ĝ(Ci|Zi)− g(Ci|Zi)|] > η

)

=Pr

(
B1

2K2n

n∑
i=1

[|ĝ(Ci|Zi)− g(Ci|Zi)|] >
B1

(
α + C2 · hβ

)
2K2

)

=Pr(
1

n

n∑
i=1

[|ĝ(Ci|Zi)− g(Ci|Zi)|] > α + C2 · hβ)

≤
√

C1

nhα2
= e−θ.

We need to bound the term Bn,1(v) ≡ |RL,P (v)−RL,D,g(v)|. By the union bound, for

all µ > 0
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Pr

(
sup
v∈Fε

Bn,1(v) ≥ B

√
µ

2n

)
= Pr

(
sup
v∈Fε
|RL,P (v)−RL,D,g(v)| ≥ B

√
µ

2n

)
≤
∑
v∈Fε

Pr

(
|RL,P (v)−RL,D,g(v)| ≥ B

√
µ

2n

)
.

We showed that (1−∆)`(C,v(Z))
g(C|Z)

+ L(0, v(Z)) ≤ B. Hence by Hoeffdings inequality, the

last term can then be bounded again by 2|Fε|e−µ, where Fε is an ε-net of
√

1
λ
BH with

cardinality

|Fε| = N

(√
1

λ
BH , ‖·‖∞ , ε

)
<∞.

Define µ = log(2|Fε|) + θ, then

Pr

(
sup
v∈Fε

Bn,1(v) ≥ B

√
ln(2|Fε|) + θ

2n

)
≤ e−θ

In conclusion we have that

Pr

(
λ ‖fD,λ‖2

H +RL,P (fD,λ)−R∗L,P − A2(λ) ≥ B

√
2µ

n
+

3clε

K
+ 4cLε+ 2η

)

≤Pr

2 sup
‖f‖H≤

√
1
λ

|RL,P (f)−RL,D(f)| ≥ B

√
2µ

n
+

3clε

K
+ 4cLε+ 2η


≤Pr

(
2

(
sup
v∈Fε
|RL,P (v)−RL,D(v)|+ 3

2K
clε+ 2cLε

)
≥ B

√
2µ

n
+

3clε

K
+ 4cLε+ 2η

)

≤Pr

(
2

(
sup
v∈Fε

Bn,1(v) +Bn,2(v)

)
≥ B

√
2µ

n
+ 2η

)

≤Pr
(

sup
v∈Fε

Bn,1(v) +Bn,2(v) ≥ B

√
µ

2n
+ η

)
≤Pr

(
sup
v∈Fε

Bn,1 ≥ B

√
ln(2|Fε|) + θ

2n

)
+ Pr

(
sup
v∈Fε

Bn,2(v) ≥ η

)
≤e−θ + e−θ = 2e−θ

and the result follows.
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A.4 Proof of Theorem 3

Proof. Case I

By Theorem 1,

λ ‖fD,λ‖2
H+RL,P (fD,λ)−R∗L,P−A2(λ) ≤ B

√√√√2log(2N(
√

1
λ
BH , ‖·‖∞ , ε)) + 2θ

n
+

2clε

K
+4cLε

with probability not less than 1− e−θ. For any compact set S = [−S, S] ⊂ R, Both L and

l are bounded and Lipschitz continuous with Lipschitz constants cL ≤ 2(S+τ)
τ2

and cl = 2
τ2

.

Hence,

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P − A2(λ)

≤B

√
2log(2N(BH , ‖·‖∞ ,

√
λε)) + 2θ

n
+

2clε

K
+ 4cLε

≤B

√
2log(2N(BH , ‖·‖∞ ,

√
λε)) + 2θ

n
+

4ε

Kτ 2
+

8(S + τ)

τ 2
ε

=B

√
2log(2N(BH , ‖·‖∞ ,

√
λε)) + 2θ

n
+M · ε

(7)

where M = 4
τ2

(
1
K

+ 2(S + τ)
)
.

By the assumption log(N(BH , ‖·‖∞ , ε)) ≤ aε−2p. Hence:

log(2N(BH , ‖·‖∞ ,
√
λε)) = log(2) + log(N(BH , ‖·‖∞ ,

√
λε)

≤log(2) + a
(√

λε
)−2p

≤ 2a
(√

λε
)−2p

.

Choose ε =
(
p
2

) 1
1+p
(

2a
n

) 1
2+2p 1√

λ
. Then

a
(√

λε
)−2p

=a

((p
2

) 1
1+p

(
2a

n

) 1
2+2p

)−2p

.

(8)
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By (7) and (8),

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P − A2(λ)

≤B

√√√√4a
((

p
2

) 1
1+p
(

2a
n

) 1
2+2p

)−2p

+ 2θ

n
+M

(p
2

) 1
1+p

(
2a

n

) 1
2+2p 1√

λ

≤B


√√√√4a

((
p
2

) 1
1+p
(

2a
n

) 1
2+2p

)−2p

n
+

√
2θ

n

+
M√
λ

(p
2

) 1
1+p

(
2a

n

) 1
2+2p

=B


√

4a
((

p
2

) −p
1+p
(

2a
n

) −p
2+2p

)
√
n

+
M√
λ

(p
2

) 1
1+p

(
2a

n

) 1
2+2p

+B

√
2θ

n

=
(p

2

) −p
1+p

[
B
√

2

(
2a

n

) 1
2+2p

+
M√
λ

p

2

(
2a

n

) 1
2+2p

+

]
+B

√
2θ

n

(9)

Recall that B2 = cLλ
−1/2 + 1 and B = B1

2K
+ B2, where B1 is some bound on the

derivative of the loss. Since 0 < λ < 1, then 1 < 1√
λ
, and therefor B2 ≤ cLλ

−1/2 + λ−1/2 =

λ−1/2(cL + 1) ≤ λ−1/2(2(S+τ)
τ2

+ 1). Earlier we defined M such that K = 4
Mτ2−8(S+τ)

. Thus,

B ≤ B1

2K
+

1√
λ

(
2(S + τ) + τ 2

τ 2

)
=
B1(Mτ 2 − 8(S + τ))

8
+

1√
λ

(
2(S + τ) + τ 2

τ 2

)
=

=

√
λB1(Mτ 2 − 8(S + τ)) + 8

(
2(S+τ)+τ2

τ2

)
8
√
λ

≤
B1(Mτ 2) + 8 + 16

(
S+τ
τ2

)
8
√
λ

=
N√
λ

where we define N ≡ B1(Mτ2)/8 + 1 + 2
(
S+τ
τ2

)
.

Hence we can bound (9) by

(p
2

) −p
1+p

[√
2N√
λ

(
2a

n

) 1
2+2p

+
M√
λ

p

2

(
2a

n

) 1
2+2p

]
+

N√
λ

√
2θ

n

≤
(p

2

) −p
1+p N√

λ

[
√

2

(
2a

n

) 1
2+2p

+
Mp

2N

(
2a

n

) 1
2+2p

]
+

N√
λ

√
2θ

n

≤
(p

2

) −p
1+p N√

λ

[
2

(
2a

n

) 1
2+2p

+
Mp

N

(
2a

n

) 1
2+2p

]
+

N√
λ

√
2θ

n

ChooseB1 ≥ 4
τ2
−
(
2 + 4

(
S+τ
τ2

)) (
1
K

+ 2S + 2τ
)−1

. Note thatM = 4
τ2

(
1
K

+ 2(S + τ)
)
≤

B1(Mτ2)
4

+ 2 + 4
(
S+τ
τ2

)
= 2N . Consequently, for B1 ≥ 4

τ2
−
(
2 + 4

(
S+τ
τ2

)) (
1
K

+ 2S + 2τ
)−1

,

we have that M ≤ 2N or M
2N
≤ 1. Note also that

(
2
p

) p
1+p

(1 + p) ≤ 3, hence:
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(p
2

) −p
1+p N√

λ

(
2a

n

) 1
2+2p

(
2 +

M

N
p

)
+

N√
λ

√
2θ

n
≤
(p

2

) −p
1+p

(p+ 1) 2
N√
λ

(
2a

n

) 1
2+2p

+
N√
λ

√
2θ

n

≤ N√
λ

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]
.

Since A2(λ) ≤ cλγ for constants c > 0, and γ ∈ (0, 1],

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P ≤ cλγ +

N√
λ

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]
(10)

We would like to choose a sequence λn that will minimize the bound in (10). Define

W (λ) = cλγ + N√
λ

[
6
(

2a
n

) 1
2+2p +

√
2θ
n

]
. Differentiating W with respect to λ and setting to

zero yields:

dW (λ)

dλ
=cγλγ−1 − 1

2
Nλ−

3
2

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]
= 0

⇔

cγλγ−1 =
1

2
Nλ−

3
2

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]

⇔ λ =

(
1

2cγ
N

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]) 1

γ+1
2

∝

(
1

n

1
2+2p

+

(
1

n

) 1
2

) 2
2γ+1

⇒ λ ∝n−
1

(1+p)(2γ+1)

Since the second derivative of W (with respect to λ) is positive, λ is the minimizer.

by (10),

Pr

(
RL,P (fD,λ)−R∗L,P ≤ cλγ +

N√
λ

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

])
≥ 1− e−θ. (11)

By the choice of λn, the bound in equation (11) can be written as
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cn−
γ

(1+p)(2γ+1) +Nn
1

2(1+p)(2γ+1)

[
6 (2a)

1
2+2p n−

1
2+2p + (2θ)

1
2 n−

1
2

]
=cn−

γ
(1+p)(2γ+1) +N · 6 (2a)

1
2+2p n−

γ
(1+p)(2γ+1) +N (2θ)

1
2 n−

2γ(1+p)+p
2(1+p)(2γ+1)

≤cn−
γ

(1+p)(2γ+1) +N · 6 (2a)
1

2+2p n−
γ

(1+p)(2γ+1) +N (2θ)
1
2 n−

γ
(1+p)(2γ+1)

=n−
γ

(1+p)(2γ+1)

(
c+N · 6 (2a)

1
2+2p +N (2θ)

1
2

)
≤Q(1 +

√
θ)n−

γ
(1+p)(2γ+1)

where Q is a constant that does not depend on n or on θ.

In conclusion, by choosing a sequence λn that behaves like n−
1

(1+p)(2γ+1) , we have that

the resulting learning rate is given by

Pr
(
RL,P (fD,λ)−R∗L,P ≤ Q(1 +

√
θ)n−

γ
(1+p)(2γ+1)

)
≥ 1− e−θ.

Case II

By Theorem 2,

λ ‖fD,λ‖2
H+RL,P (fD,λ)−R∗L,P−A2(λ) ≥ B

√√√√2log(2N(
√

1
λ
BH , ‖·‖∞ , ε)) + 2θ

n
+

3clε

K
+4cLε+2η

where η =
2K2(α+C2·hβ)

B1
and with probability not greater than 2e−θ. Choose ε =(

p
2

) 1
1+p
(

2a
n

) 1
2+2p 1√

λ
, M = 2

τ2

(
3
K

+ 4(S + τ)
)

, B1 ≥ 6
τ2
−
(
6 + 12

(
S+τ
τ2

)) (
3
K

+ 4S + 4τ
)−1

,

and define N = B1(Mτ2)
12

+ 1 + 2
(
S+τ
τ2

)
, then as in (10), a very similar calculation shows

that

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P ≤ cλγ +

N√
λ

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]
+ 2η.

Choose h = κn−
1

2β+1 as in (3) and choose α such that ln(α) = 2β+1
2β

θ + 1
2
ln(C1) −

1
2
ln(n) + 1

2β
ln(2βC2) as in Theorem 2. Then by the definition of η,
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η =
2K2

(
α + C2 · hβ

)
B1

=
2K2

(
α + C2 · κβn−

β
2β+1

)
B1

=
2K2e

2β+1
2β (C1)

1
2 (2βC2)

1
2β

B1n
1
2

+
2K2C2κ

β

B1n
β

2β+1

≤
2K2

(
e

2β+1
2β (C1)

1
2 (2βC2)

1
2β + C2κ

β
)

B1n
β

2β+1

.

Hence,

λ ‖fD,λ‖2
H +RL,P (fD,λ)−R∗L,P ≤ cλγ +

N√
λ

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]
+ 2η

≤cλγ +
N√
λ

[
6

(
2a

n

) 1
2+2p

+

√
2θ

n

]
+

4K2
(
e

2β+1
2β (C1)

1
2 (2βC2)

1
2β + C2κ

β
)

B1n
β

2β+1

Similarly to Case I, choosing λn ∝ n−
1

(1+p)(2γ+1) minimizes the last bound (note that the

choice of λn does not depend on η). Hence that the resulting learning rate is given by

Pr(D ∈ (Z × Y)n : RL,P (fD,λn)−R∗L,P ≤ Q(1 +
√
θ)n−min(

γ
(1+p)(2γ+1)

, β
2β+1)) ≥ 1− e−θ

where Q is a constant that does not depend on n or on θ.
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דוגמא זו ממחישה את חשיבות הנושא ואת הצורך במציאת כלים חדשניים לניתוח . הצנזור

 .באמידת תוחלת זמן המאורע אנו מתמקדיםבעבודה זו  .נתונים מסוג זה

עבור , SVM-צעות שימוש בשיטת הבאמ Tאמוד את התוחלת המותנה של המטרה שלנו היא ל

חלק ניכר מהעבודה עוסק בחקירת התכונות התיאורטיות . Current Status Dataמסוג  נתונים

הקשר האופטימאלית ' למוד את פונקינסו ל SVMs. עקביותב עוסקובפרט , של הגישה המוצעת

להגדיר ראשית  עלינו SVMשיטות כלומר ב. ובתוספת קנס, ן האמפיריביחס למזעור הסיכו

בר כדי להתג. יש קושי בהגדרת פונקצית הפסד זו, אינו נצפה T-מאחר ו. פונקצית הפסד מתאימה

ובאינדיקטור הסטטוס  Cהפסד התלויה במשתנה הצנזור  אנו מגדירים פונקצית, על בעיה זו

}הנוכחי }T C  1 ,התכונה המעניינת של הצגה זו היא שהסיכון . אך לא בזמן המאורע

ההפסד  ציתלסיכון ביחס לפונקשווה , ההפסד המקוריתצית ביחס לפונק( תוחלת ההפסד)

  .החדשה

שכן , תהפסד ריבועי ציתבפונק אנו משתמשים, מכיוון שאנו מעוניינים באמידת התוחלת המותנה

 ציתאת פונקלמצוא  על מנת. החלטה בייס ביחס להפסד ריבועי ציתהתוחלת המותנה היא פונק

הפסד את הסיכון האמפירי ביחס לפונקצית  ממזעריםאנו , CSDעבור נתוני ית -SVM-הההחלטה 

תכנות  להציג בעיית מזעור זו כבעייתשניתן תוצאה מעניינת היא . קנס בתוספתו, התלויה בנתונים

 .פתרון סגור מצאנולבעיה זו ; תחת אילוצי שוויוןריבועי 

משתנה הצנזור הינה של צפיפות פונקצית הסוגיה נוספת בה נתקלנו היא האם ניתן להניח כי 

כאשר זו , לדוגמא, מן הצנזור הינה ידועהזניתן להניח כי התפלגות אכן פעמים רבות . ידועה

החלטנו לפצל , על מנת לפתור את הסוגיה. תמיד תקפההנחה זו אינה , עם זאת. י החוקר"נקבעת ע

שר התפלגות זמן כא( 5)-כאשר התפלגות זמן הצנזור ידועה ו( 0: )את תהליך הניתוח לשני מקרים

, התפלגות זמן הצנזור אינה ידועה ובמקרה שב. הצנזור אינה ידועה ועלינו לאמוד את הצפיפות

יש לציין שמשתנה הצנזור . אמדנו את הצפיפות בעזרת שיטות לא פרמטריות מבוססות גרעין

 פיתחנו .צפיפות פונקציתשיטות רגילות לאמידת ניתן להשתמש בבעצמו אינו מצונזר ולכן 

י כך שהראנו שהסיכון ביחס "ע עקביותובפרט הוכחנו  לכל אחד משני המקרים תיאוריה מתאימה

 .קצבי לימוד לכל אחד מן המקריםחישבנו וכן  ,ההפסד החדשה מתכנס לסיכון בייס ציתלפונק

נו יהרא. לגישות קיימות אחרות בעזרת סימולציות המוצעת נו את יעילות השיטהילסיום השוו

ומציגה ביצועים טובים במיוחד כאשר התפלגות , השוואה לשיטות קיימות-ה שלנו ברתשהגיש

 .מימדיים-זמן המאורע אינה מגיעה ממשפחה פרמטרית או כאשר המשתנים המסבירים הם רב

 

 

 



 תקציר

עבורם המידע , הינם נתונים מתחום השרידות Current Status Dataנתונים מצונזרים מסוג 

אנו פיתחנו גישת . Cגדול או קטן מזמן הצנזור  Tהוא האם  Tבי זמן המאורע גהיחידי הזמין ל

Support Vector Machines  מבלי להניח , אשר אומדת את התוחלת המותנהלנתונים מסוג זה

י מזעור הסיכון האמפירי ביחס לפונקצית הפסד "תקבלת עמפונקצית הקשר . מודל פרמטרי

-בעזרת אי, נו שלפונקצית הקשר יש פתרון סגור והוכחנויהרא .קנס בתוספתו, התלויה בנתונים

עבור משפחה , שפונקצית קשר זו מתכנסת לתוחלת המותנה האמיתית, חדשים אורקלשוויונות 

הצגנו מספר , לסיום. לימוד של השיטהחישבנו את קצב ה, כמו כן. גדולה של מידות הסתברות

-נו שהגישה שלנו ברתיהרא. סימולציות ובדקנו את הביצועים של גישה זו ביחס לגישות מתחרות

ומציגה ביצועים טובים במיוחד כאשר התפלגות זמן המאורע אינה , השוואה לשיטות קיימות

 .מימדיים-פרמטרית או כאשר המשתנים המסבירים הם רבמגיעה ממשפחה 

 תקציר מורחב

נסיגה של גידול כגון , משך הזמן עד להופעת אירוע מסויםניתוח ב מתענייניםבניתוח שרידות אנו 

אמידת התפלגות זמן  .ומוות בהקשר הביולוגי, קלקול של מכונה בהקשר המכני, בהקשר הרפואי

, יםבהרבה מקר. ובהקשר הרפואי בפרט, המאורע הינה בעלת חשיבות מכרעת במגוון תחומים

כלומר לא ניתן לצפות לחלוטין בזמני המאורע מכיוון , נתונים מתחום השרידות הינם מצונזרים

 יםבעבודה זו אנו דנים בסוג מסוים של נתונים מצונזרים שנקרא, ספציפית. שהמידע חסר

Current Status Data , ידוע רק אם , באיזושהי נקודת זמן, (או פציינט)עבורם לכל דגימה

לניתוח נתונים , נטולת מודל, המטרה שלנו היא לפתח גישה כללית. או לא, ר התרחשהמאורע כב

אנו מציעים , בפרט. למידה הסטטיסטיתה תחוםבעזרת שיטות מ Current Status Dataמסוג 

. Current Status Dataלניתוח נתונים מסוג  Support Vector Machines (SVMs)גישה של 

קצב , שם את השיטה יחסית בקלותינובעת מכך שניתן לי לנתונים מצונזרים SVMs-הבחירה ב

ומובטחת התכנסות לפתרון , טובה השיטה יכולת ההכללה של, מהיר שיטהה הלמידה של

 .האופטימאלי

בי זמן געבורם המידע היחידי הזמין ל, מצונזריםהינם נתונים  Current Status Dataנתונים מסוג 

 n-נניח והנתונים מורכבים מ, באופן פורמאלי. Cגדול או קטן מזמן הצנזור  Tהוא האם  Tהמאורע 

1שלשות מהצורה  1 1{( , , ), , ( , , )}n n nD Z C Z C     ; כשארdZ   וקטור של משתנים

עבור         מקבל ערכים בקטע  Cמשתנה הצנזור , אינו שלילי Tזמן המאורע , מסבירים

0איזשהו   ,י "ואינדיקטור הסטטוס הנוכחי מוגדר ע{ }T C  1 . סוג זה של נתונים

. וסרטן ,מחלות מדבקות, דמוגרפיהשל יחסית נפוץ  וכולל דוגמאות ממגוון תחומים כגון חקר 

 C-ו, הוא הזמן מעת החשיפה לגורם מסרטן ועד להופעת גידול סרטני T, חקר הסרטןב, לדוגמא

מכאן שקשה  .חיה על מנת לבדוק נוכחות או אי נוכחות של הגידול נתחיםהוא זמן אקראי בו מ

מכיוון שאנו לא צופים בזמן המאורע עצמו אלא רק בזמן  Tלאמוד את התפלגות זמן המאורע 
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