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Support Vector Machines for Current Status Data

Yael Travis-Lumer

ABSTRACT

Current status data is a data format where the time to event is restricted to knowledge of
whether or not the failure time exceeds a random monitoring time. We develop a support
vector machine learning method for current status data that estimates the failure time
expectation as a function of the covariates. In order to obtain the support vector machine
decision function, we minimize a regularized version of the empirical risk with respect
to a data-dependent loss. We show that the decision function has a closed form. Using
finite sample bounds and novel oracle inequalities, we prove that the obtained decision
function converges to the true conditional expectation for a large family of probability
measures and study the associated learning rates. Finally we present a simulation study

that compares the performance of the proposed approach to current state of the art.
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1 Introduction

In this paper we aim to develop a general, model free, method for analyzing current
status data using machine learning techniques. In particular, we propose a support vector
machine (SVM) learning method for estimation of the failure time expectation for current
status data. SVM was originally introduced by Vapnik in the 1990’s and is firmly related
to statistical learning theory (Vapnik, [1999). The choice of SVMs for current status data
is motivated by the fact that SVMs can be implemented easily, have fast training speed,
produce decision functions that have a strong generalization ability and can guarantee
convergence to the optimal solution, under some weak assumptions (Shivaswamy et al.,
2007)).

Current status data is a data format where the failure time 7T is restricted to knowledge
of whether or not T exceeds a random monitoring time C'. This data format is quite
common and includes examples from various fields. |Jewell and van der Laan| (2004)
mention a few examples including: studying the distribution of the age of a child at
weaning given observation points; when conducting a partner study of HIV infection over
a number of clinic visits; and when a tumor under investigation is occult and an animal is
sacrificed at a certain time point in order to determine presence or absence of the tumor.
For instance, in the last example of carcinogenicity testing, T is the time from exposure
to a carcinogen and until the presence of a tumor, and C' is the time point at which the
animal is sacrificed in order to determine presence or absence of the tumor. Clearly, it is
difficult to estimate the failure time distribution since we cannot observe the failure time
T. These examples illustrate the importance of this topic and the need to find advanced
tools for analyzing such data.

We present a support vector machine framework for current status data. We propose
a learning method, denoted by CSD-SVM, for estimation of the failure time expectation.
We investigate the theoretical properties of the CSD-SVM, and in particular, prove con-
sistency for a large family of probability measures. In order to estimate the conditional
expectation we use a modified version of the quadratic loss. Using the methodology of
van der Laan and Robins (1998)), we construct a data dependent version of the quadratic
loss. Since the failure time 7' is not observed, our data dependent loss function is based

on the censoring time C and on the current status indicator. Finally, in order to obtain



a CSD-SVM decision function for current status data, we minimize a regularized version
of the empirical risk with respect to this data-dependent loss.

There are several approaches for analyzing current status data. Traditional methods
include parametric models where the underlying distribution of the survival time is as-
sumed to be known (such as Weibull, Gamma, and other distributions with non-negative
support). Other approaches include semiparametric models, such as the Cox proportional
hazard model, and the accelerated failure time (AFT) model (see, for example, Klein
and Moeschberger] [2013). In the Cox model, the hazard function is assumed to be pro-
portional to the exponent of a linear combination of the covariates. In the AFT model,
the log of the failure time is assumed to be a linear function of the covariates. Several
works including Diamond et al. (1986), |Jewell and van der Laan| (2004)) and others have
suggested the Cox proportinal hazard model for current status data, where the Cox model
can be represented as a generalized linear model with a log-log link function. Other works
including Tian and Cai (2006]) discussed the use of the AFT model for current status data
and suggested different algorithms for estimating the model parameters. Needless to say
that both parametric and semiparametric models demand stringent assumptions on the
distribution of interest which can be restrictive. For this reason, additional estimation
methods are needed.

Over the past two decades, some learning algorithms for censored data have been
proposed (such as neural networks and splitting trees), but mostly with no theoretical
justification. Additionally, most of these algorithms cannot be applied to current status
data but only to other, more common, censored data formats. Recently, several works
suggested the use of SVMs for survival data. Van Belle et al.| (2007)) suggested the use
of SVMs for survival analysis, and formulated the task as a ranking problem. Shortly
after, Khan and Zubek (2008)) suggested the use of SVMs for regression problems with
censored data; this was done by asymmetrically modifying the e-insensitive loss function.
Both examples were empirically tested but lacked theoretical justification. ? proposed an
empirical quantile risk estimator, which can also be applied to right censoring, and studied
the estimator’s performance. (Goldberg and Kosorok (2012) studied an SVM framework
for right censored data and proved that the algorithm converges to the optimal solution.
Shiao and Cherkassky (2013) suggested two SVM-based formulations for classification

problems with survival data. These examples illustrate that initial steps in this direction



have already been taken. However, as far as we know, the only SVM-based work that
can also be applied to current status data is by |Shivaswamy et al.| (2007) which has
a more computational and less theoretic nature. The authors studied the use of SVM
for regression problems with interval censoring and, using simulations, showed that the
method is comparable to other missing data tools and performs significantly well when
the majority of the training data is censored.

The contribution of this work includes the development of an SVM framework for
current status data, the study of the theoretical properties of the CSD-SVM, and the
development of new oracle inequalities for censored data. These inequalities, together
with finite sample bounds, allow us to prove consistency and to compute learning rates.

The paper is organized as follows. In section[2]we describe the formal setting of current
status data and discuss the choice of the quadratic loss for estimating the conditional
expectation. In section |3| we present the proposed CSD-SVM and its corresponding data-
dependent loss function. Section [] contains the main theoretical results, including finite
sample bounds, consistency proofs and learning rates. In section |5 we illustrate the
estimation procedure and show that the solution has a closed form. Section [6] contains
the simulations. Concluding remarks are presented in section [/} The lengthier proofs
appear in Appendix [A] The Matlab code for both the algorithm and for the simulations

can be found in the[7



2 Preliminaries

In this section we present the notations used throughout the paper. First we describe the
data setting and then we discuss briefly loss functions and risks.

Assume that the data consists of n i.i.d. random triplets D = {(Z1, C1, A1), ..., (Zn, Cn, Ap) .
The random vector Z is a vector of covariates that takes its values in a compact set
Z C R%. The failure-time 7' is non-negative, the random variable C is the censoring time,
the indicator A = 1{T < C'} is the current status indicator at time C, and is contained in
the interval [0,7] = ) for some constant 7 > 0. For example, in carcinogenicity testing,
an animal is sacrificed at a certain time point in order to determine presence or absence
of the tumor. In this example, T is the time from exposure to a carcinogen and until the
presence of a tumor, C' is the time point at which the animal is sacrificed, and A is the
current status indicator at time C' (indicating whether the tumor has developed before
the censoring time, or not).

We now move to discuss a few definitions of loss functions and risks, following Steinwart
and Christmann (2008). Let(Z,.A) be a measurable space and Y C R be a closed subset.
Then a loss function is any measurable function L from Z x ) x R to [0, c0).

Let L : Z x )Y xR — [0,00) be a loss function and P be a probability mea-
sure on Z x ). For a measurable function f : Z — R, the L-risk of f is defined by
Rup(f) = Ep[L(Z)Y,f(2))] = [,.y L(2,y,f(2))dP(z,y). A function f that achieves
the minimum L-risk is called a Bayes decision function and is denoted by f*, and the

minimal L-risk is called the Bayes risk and is denoted by R} p. Finally, the empirical

L-risk is defined by Rpp (f) = 2 " L(zi,yi, f(21)).
i=1
For example, it is well known (see, for example, Hastie et al.,2009) that the conditional

expectation is the Bayes decision function with respect to the quadratic loss.



3 Support Vector Machines for Current Status Data

Let H be a reproducing kernel Hilbert space (RKHS) of functions from Z to R, where an
RKHS is a function space that can be characterized by some kernel function k : Z x Z —
R. By definition, if k is a universal kernel, then H is dense in the space of continuous
functions on Z, C'(Z) (see, for example, |Steinwart and Christmann|2008, Definition 4.52).
Let us fix such an RKHS H and denote its norm by ||-||;, and let {\, } > 0 be some sequence

of regularization constants. An SVM decision function for uncensored data is defined by:
1 n
= 1 >\TL 2 - L Zi’ CZ_ZL" ZZ .
fp, = argmin pep || 5 + . ;:1 ( (Zy))

We recall that current status data consists of n independent and identically-distributed
random triplets D = {(Z1,C1, A1), ..., (Zn,Cn, Ay)}. Let F({|Z = z) and G(-|Z = z)
be the cumulative distribution functions of the failure time and censoring, respectively,
given the covariates Z = z. Let g(-|Z = z) be the density of G(-|Z = z). For current
status data, we introduce the following identity between risks, following van der Laan and
Robins| (1998]). We extend this notion and incorporate loss functions and covariates in
the following identity. Let L : Y x R + [0, 00) be a loss function differentiable in the first
variable. Let £ : ) x R — R be the derivative of L with respect to the first variable.

We would like to find the minimizer of Ry, p(f) over a set H of functions f. Note that

R p(f) =EzEnzL(T, f(Z))

~; | [ st sznariz)

=Ey /OT Ut f(2))(1 = F(t]2))dt — L(t, f(2))(1 = F(t]2))lg

zgfllmﬂmxy4wwmﬂ+Ewmfwm,

where the equality before last follows from integration by parts. Note also that (1 —A) =



1{T > C} and thus

5 (1—??‘02,;(2))} By B {1{T >g(€(};i<z(/;’f<z>) Z:%T:t”
[ 7 M= e FEDglelz)
=B / TR
_Eq /0 1t > }ele, f(z))dc}

T

te, £(2)) /O "1t > c}dF(t|z)dc}

0

B, UOTe(c, F))( - F(c|z))dc} |

This shows that the risk can be represented as the sum of two terms

p[0-840 1)

9(C12) } + E[L(0, f(2))].

Hence, in order to estimate the minimizer of Ry p(f), one can minimize a regularized

version of the empirical risk with respect to the data-dependent loss function

LD, (2,C,A.5)) = U —g(AC}’ﬁZ(f s)

+ L(0, s).

Note that this function need not be convex nor a loss function. For the quadratic loss

function, our data-dependent loss function becomes

1 —A)2(C —s)

L"(D,(Z,C,A,s)) = ( 7(C12)

+ (s)?.

Note that this function is convex but not necessarily a loss function since it can obtain

negative values. In order to ensure positivity we add a constant term that does not depend

on f, and so our loss becomes L*(D, (Z,C, A, f(Z))) = %—1—(]‘(2))%—@, where

for a fixed dataset of length n, a = max {O_—A)Q} Note that this additional term will
1<i<n L (9(CilZ))

not effect the optimization (since L™ is just a shift by a constant of L™) and thus will be

neglected here after.

In order to implement this result into the SVM framework, we propose to define the

CSD-SVM decision function for current status data by



n

Z{( )2(Ci — f(Z:))

Fon = argmin e £ + A RN C(C ) P

=1

Note that if the censoring mechanism is not known, we can replace the density g with

its estimate g; in this case our loss function becomes L"(D, (Z,C, A, s)) = %2'(2(,;—5) +
(5)* and the SVM decision function is
. Lo [(1=20)2(C; — f(Z))
c _ >\ 2 - 7 7 7 ZZ 2
fi = angmin e+ 23 [EE 2RI 4 10z

=1

(note the use of ¢ instead of g in the denominator).

We note that for current status data, the assumption of some knowledge of the censor-
ing distribution is reasonable, for example, when it is chosen by the researcher (Jewell and
van der Laan) [2004). In other cases, the density can be estimated using either parametric
or nonparametric density estimation techniques such as kernel estimates. It should be
noted that the censoring variable itself is not censored and thus simple density estimation

techniques can be used in order to estimate the density g.



4 Theoretical Results

In this section we prove consistency of the CSD-SVM learning method for a large family
of probability measures and construct learning rates. We first assume that the censoring
mechanism is known, and thus the true density of the censoring variable g is known.
Using this assumption, and some additional conditions, we bound the difference between
the risk of the CSD-SVM decision function and the Bayes risk in order to form finite
sample bounds. We use this result, together with oracle inequalities, to show that the
CSD-SVM converges in probability to the Bayes risk. That is, we demonstrate that for
a very large family of probability measures, the CSD-SVM learning method is consistent.
We then consider the case in which the censoring mechanism is not known and thus
the density ¢ needs to be estimated. We estimate the density g using nonparametric
kernel density estimation and develop a novel finite sample bound. We use this bound to
prove that the CSD-SVM is consistent even when the censoring distribution is not known.
Finally we construct learning rates for the CSD-SVM learning method for both ¢ known

and unknown.

Definition 1. Let L(y,s) = (3";—23)2 be the normalized quadratic loss, let I(y, s) = 2252 pe

T

its derivative with respect to the first variable, and let L™(D, (Z,C, A, s)) = 7_12 (% + 32>

be the data-dependent version of this loss.

For simplicity, we use the normalized version of the quadratic loss.
Since both L and [ are convex functions with respect to s, then for any compact set
S =[-5,5] C R, Both L and [ are bounded and Lipschitz continuous with constants ¢y,

and ¢; that depend on §.

Remark 1. L(y,0) < 1 for ally € Y and {(y,s) < By for all (y,s) € Y xS and for

some constant By > 0.
We need the following assumptions:

(A1) The censoring time C' is independent of the failure time 7" given Z.

(A2) C takes its values in the interval [0, 7] and inf g (c|z) > 2K > 0, for some K > 0

z€Z,ceC

(A3) Z C R is compact .



(A4) H is an RKHS of a continuous kernel £ with ||k[|_ <1 .

Define the approximation error by As(\) = }HLA 1£13, + Rep(f) — R p
E :
Define By = ¢zA"72+ 1 and B = % + By, where By is defined in Remark

4.1 Case I - The Censoring Density g is Known

In this section we develop finite sample bounds assuming that the censoring density ¢ is

known.

Theorem 1. Assume that (-( hold. Then for fited A > 0,n > 1, > 0, and
0 > 0, with probability not less than 1 — e~?
210g(2N(7/ + Bi,|||| o0 €)) +26 cie
Mfoally, + Brp(for) — By p— As(\) < B/ 2N Bl 420 | 2ee g

where N(\™2 By, |-l s €) is the covering number of the € —net of \/;B_H with respect
to supremum norm and where By is the unit ball of H (for further details see|Steinwart

and Christmann |2008) .

The proof of this theorem appears in Appendix [AT]
We now move to discuss consistency of the CSD-SVM learning method. By definition,

P-universal consistency means that for any € > 0,

lim P(D c (Z X y)" : RL,p(fD,)\n) < RZ:P + E) =1 (2)

n—o0

where R} p is the Bayes risk. Universal consistency means that holds for all prob-
ability measures P on Z x ). However, in survival analysis we have the problem of
identifiability and thus we will limit our discussion to probability measures that satisfy
some identification conditions. Let P be the set of all probablity measures that satisfy
assumptions (—( We say that a learning method is P-universal consistent when
holds for all probability measures P € P.

In order to show P-universal consistency, we utilize the finite sample bounds of The-

orem [T The following assumption is also needed for proving P-universal consistency:
(Ab) }n%RL,p(f) = R} p, for all probability measures P on Z x )
E b

Assumptio ( means that our RKHS H is rich enough to include the Bayes decision

function.



Corollary 1. Assume the setting of Theorem and that Assumptio (A@ holds. Let X\,

be a sequence such that \, — 0 and \,n — o0. Choose € = n~", for some p > 0. Then

n—o0 n—00

the CSD-SVM learning method is P-universal consistent.

Proof. In Theorem [1| we showed that

202N (1B, [l ) +20 2,0
+
n K

M foalla+ R p(fop) Ry p—Ax(N) > B +4cpe,

with probability not greater than e~".
Choose A = \,;; from Assumption ( together with Lemma 5.15 of Steinwart and

Christmann (2008, 5.15), Aa(\,) converges to zero as n converges to infinity. Clearly

20g(2N (\/+Bi, |[l.c ) + 27
— 0.

n n—oo

B

Finally, from the choice of ¢, it follows that both 26715 and 4cpe converge to 0 as n — 00.

Hence for every fixed 6,

2[09(2]\[(\/%3[{, ||||oo7€>>+20 2c,e
+
n K

Mol o3 AR p(for)—Ri p < As(\)+B +dcre

with probability not less than 1-e~?. The right hand side of this converges to 0 as n — oo,
which implies consistency (Steinwart and Christmann, 2008, Lemma 6.5). Since this holds

for all probability measures P € P, we obtain P-universal consistency. O]

4.2 Case II - The Censoring Density g is Unknown

In this section we form finite sample bounds for the case in which the censoring density
is not known and needs to be estimated. We assume that the density of the censoring
variable is estimated using nonparametric kernel density estimation. In Lemma |1 we
construct finite sample bounds on the differnce between the estimated density g and the
true density g. In Theorem [2| we utilize this bound to form finite sample bounds for the

CSD-SVM learning method.

10



Definition 2. We say that K : R — R (not to be confused with the kernel function k of
the RKHS H) is a kernel of order m, if the functions u — wK(u) ,j = 0,1,...,m are
integrable and satisfy [*° K(u)du=1 and [*._ W/ K(u)du=0, j=1,..,m

Definition 3. The Holder class > (8, L) of functions f : R+— R is the set of m =
| 3] times differentiable functions whose derivative f™ satisfies }f(m) (x) — f(m)(x’)’ <

Lz —a'|""™ for some constant £ > 0.

Lemma 1. Let K : R — R be a kernel function of order m satisfying f_oooo K?(u)du < oo
and define g(z) = % Yo K (Cih’x)where h is the bandwidth. Suppose that the true

density g satisfies g(¢) < Gmax < 00. Let us also assume that g(c) belongs to the Holder
class Y (8, L). Finally, assume that [~ lu|” | K (u)| du < co. Then for any e > 0,

C
( Z|gcZ g(c)| > e+ Cy- hﬁ> nh;?

where C1 = Gimas [0, K? (v) dv and Cy = Wfoo K ()] 0]’ dv are constants, and

m! —00

for some w € [0, 1].

The proof of the lemma is based on Tsybakov| (2008, Propositions 1.1 and 1.2) together
with basic concentration inequalities; the proof can be found in Appendix [A.2]
We would like to choose h that minimizes the sum of Cs - h? and C1 Define

nhe?
U(h) = Cy - hP +

%2. Taking the deivative of U with respect to h and setting to zero

yields:
dU (h) . 1 /Cy s
—_— hﬁ 1 —_ — —h 2 =
dh pes 2V ne? 0
2
VO 28+1 L\ T 1
o= (sagm) () E
where Kk = % . It can be shown that the second derivative of U is positive
(28Che) PP

which guarentees that the zero of the derivative above is the minimizer. After substituting
__1 . . N —_B_
h = kn~ 7 in U, we obtain that U(kn 2ﬁ1+1) X n 2L,

Choosing € > 0 such that in(e) = 252—;;16’ + 3In(Ch) — 3in(n) + %ln(?BCg) and substi-

11



tuting h = mniTlﬂ, we obtain by Lemma |1| that

Kne?

1
3 Cin2+1
( Z’g ) cZ]>e+02/<;n 25+1>§ L =e?

We now move to construct finite sample bounds for the CSD-SVM learning method
when ¢ is unknown using the above lemma. We assume that ¢ is the kernel density

estimate of g, such that the conditions of Lemma [1] hold.

Theorem 2. Assume that (A)-(A4]) hold. Assume the setting of Lemma []] and that
inf ¢g(c|lz) > K >0, for some K > 0. Choose « such that

0 < (C))} (26C)F n} <a <2(CL)* (26C,)% n
and
In(a) = 262; 10 + %ln(Cl) - ;l (n) + %ln(%@)_

Then for fited X\ > 0,0 >0, n > 1, ¢ > 0, we have with probability not less than 1 — 2e~°
that

2009(2N (/1 Bir, |l ) + 26 ,dac

M foalls,+Rep(foa)—Ry p—As(\) < B - +—5

+4cre+2n

B (a+cg-h5 )
2K?

where n =
The proof of the theorem appears in Appendix [A.3]
Using the above theorem we show that under some conditions, the CSD-SVM decision

function converges in probability to the conditional expectation.

Corollary 2. Let )\, be a sequence such that X\, — 0 and that \,n — oo. Choose

n—o0 n—o0

e =n"", for some p > 0. Assume the setting of Theorem 3, then the CSD-SVM learning

method 1s consistent.

The proof of the corollary is derived similarly to the proof of Corollary 1| (consistency

- case I).

12



4.3 Learning rates

In this section we derive learning rates for cases I and II.

Definition 4. A learning method is said to learn with rate €, C (0,1] that converges to
zero if for alln > 1 and all 7 € (0,1], Pr (RL,p(fD) —Rip< CPCTEn) >1—171, where

¢ and cp are constants such that ¢, € [1,00) and cp > 0.

Theorem 3. Assume that (A1)-(Aj) hold. Choose 0 < X\ < 1 and assume that there exist
constants a > 1, p > 0 such that log(N(Bg, |||, ,€)) < ae*. Additionally, assume that
there exist constants ¢ > 0, v € (0,1] such that Ay(X\) < cA7. Choose A, =n T
Then

(i) If g is known, the learning rate is given by n” T

(i1) If g is not known and the setup of Theorem holds, then the leraning rate is given

in( —0 0 B
by n~ min( (1+p)(27+1)’2ﬂ+1) .

The proof of the theorem appears in Appendix [A.4]

13



5 Estimation of the Failure Time Expectation

In this section we demonstrate how to compute the CSD-SVM decision function with

respect to the quadratic loss. In addition we show that the solution has a closed form.

Since L"(D, (Z,C,A,s)) = % + 52 is convex, then for any RKHS H over Z and
for all A > 0, it follows that there exists a unique SVM solution fp . In addition, by the
Representer Theorem (Steinwart and Christmann, 2008, 5.5), there exists constants o =
(1, ..y a)T € R™ such that fpa(z) = Y0, aik(z,2), 2 € Z. Hence the optimization
problem reduces to estimation of the vector a. A more general approach will also include
an intercept term b such that fp(z) = > i, a;k(z, z;) + b.

Let @ : Z — H be the feature map that maps the input data into an RKHS H such
that (®(z;), ®(2)) = k(zj,2). Our goal is to find a function f7, , that is the solution of
. From the Representer Theorem, there exists a unique SVM decision function of the
form fp =0, a;®(z) + 0.

Define for each o € R™ the function w(a) by w(a) =377, a;®(2;).

Then for C) = n_l/\’ the optimization problem reduces to:

. C)\ Zn (1 — A2)27’Z 2 1 2
wr,?elIrR%” 2 i=1 [ 9(Ci|Zy) * ri)7| + 2HwH
such that r; = ¢; — f(z)

where f(z;) =< w, P(z;) > +b.

This is an optimization problem under equality constraints and hence we will use the

method of Lagrange multipliers. The Lagrangian is given by

C\y A)2r; 1 “
Lagrangep = - E [ i(C ]Z + (¢; — ri)ﬂ +§Hw||2+ E a; (ci— < w,®(z) > =b—r;)

Minimizing the original problem Lagrangep yields the following conditions for opti-

mality:

w = Zn: a; P(z;)
i=1

14



Since these are equality constraints in the dual formulation, we can substitute them into
Lagrangep to obtain the dual problem Lagrangep. By the strong duality theorem (Bazaraa
et al., 2006, Theorem 6.2.4), the solution of the dual problem is equivalent to the solution

of the primal problem.

n _ . oy L (1-4y)
Lagrange SN (1—4,)2 (C)\ +¢i Qg(ci\zi)> ((1 —A) ﬂ>2
SRR T i—1 9(Cil Z:) 29(CilZi)  C,
1 n n
+§ZZ%%’/€(Z’@,Z])
i=1 j=1
n n a; (1 B Az)
ile Kz z) —b— (24— U
2 ( 2 oHen ) (& +e-s wz»))

Some calculations yield:

Lagrangep Z 1(0é2 ~——ZZO¢O@ %, %5) ZC’

i=1 i=1 j=1 A
1 1
T T
=va—=-a (K+—=—I|a«a
> ( e )
subject to the constraint >, , a; = 0, and where v’ = <§((1C_'1|AZ11))’ . g((l(;IAZ"j)).

This is a quadratic programming problem subject to equality constraints. Its solution

satisfies:

aq K11 —+ CL/\ K12 Coe Kln 1 (%1
Qo Ko Koo + c% S Ko, 1 U2
(7% Knl Kng Coe Knn + CL)\ 1 Un
b 1 1 1 0 0
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-1
Note that if we do not require an intercept term, the solution is a = <K + C%I ) v.
It is interesting to note that this solution is equivalent to the solution attained by the

Representer Theorem for differentiable loss functions: «o; = ﬁ[/ (@i, yi, foa(24)) (Stein-

wart and Christmann, 2008, Section 5.2). In our case, L,(C;, f(Z;)) = (lfA;)(%ﬁiZf{(Zi)) +
(F(Z))% hence a; = 5L, (G, f(Z) = 5t (Y8952 +2£(7)) and since f(Z) =

-1
> iy k(2 z;), we see that o = v — Ko, ie, a= <K + C%I) v.
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6 Simulation Study

In this section we test the CSD-SVM learning method on simulated data and compare
its performance to current state of the art. We construct four different data-generating
mechanisms, including one-dimensional and multi-dimentional settings. For each data
type, we compute the difference between the CSD-SVM decision function and the true
expectation. We compare this result to results obtained by the Cox model and by the
AFT model. As a reference, we compare all these methods to the Bayes risk.

For each data setting, we considered two cases;: (i) the censoring density g is known;
and (ii) the censoring density is not known. For the second setting, the distribution of
the censoring variable was estimated using nonparametric kernel density estimation with
a normal kernel. The code was written in Matlab, using the Spider libraryﬂ In order to
fit the Cox model to current status data, we downloaded the ‘ICsurv’ R package (Wangj,
2014). In this package, monotone splines are used to estimate the cumulative baseline
hazard function, and the model parameters are then chosen via the EM algorithm. We
chose the most commonly used cubic splines. To choose the number and locations of the
knots, we followed Ramsay| (1988) and [McMahan et al. (2013) who both suggested using a
fixed small number of knots and thus we placed the knots evenly at the quantiles. For the
AFT model, we used the ‘surv reg’ function in the ‘Survival’ R package (Therneau and
Lumley| 2014)). In order to call R through Matlab, we installed the R package rscproxy
(Baier, 2012), installed the statconnDCOM servelﬂ, and download the Matlab R-Link
toolbox (Henson, 2004). For the kernel of the RKHS H, we used both a linear kernel
and a Gaussian RBF kernel k(z;,z;) = exp (%), where o and C) were chosen using
5-fold cross-validation. The code for the algorithm and for the simulations is available for
download; a link to the code can be found in the [7]

We consider the following four failure time distributions, corresponding to the four
different data-generating mechanisms: (1) Weibull, (2) Multi-Weibull, (3) Multi-Log-
Normal, and (4) an additional example where the failure time expectation is triangle
shaped. We present below the CSD-SVM risks for each case and compare them to risks

obtained by other methods. The risks are based on 100 iterations per sample size. The

!The Spider library for Matlab can be downloaded from http://www.kyb.tuebingen.mpg.de/bs/people/spider/
2Baier Thomas, & Neuwirth Erich (2007). Excel :: COM :: R. Computational Statistics, Volume 22,
Number 1/April 2007. Physica Verlag.
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Figure 1: Weibull failure time distribution. The Bayes risk is the dashed black line and the
boxlpots of the following risks are compared: CSD-SVM with an RBF kernel, CSD-SVM
with a linear kernel, Cox and AFT, for sample sizes n = 50, 100, 200, 400, 800.

Bayes risk is also plotted as a reference.

In Setting 1 (Weibull failure-time), the covariates Z are generated uniformly on [0, 1],
the censoring variables C' is generated uniformly on [0, 7], and the failure time 7" is gen-
erated from a Weibull distribution with parameters scale = e~3% , shape = 2. The failure
time was then truncated at 7 = 1.

Figure [1| compares the results obtained by the CSD-SVM to results achieved by the
Cox model and by the AFT model, for different sample sizes. It should be noted that
both the PH and the AFT assumption hold for the Weibull failure time distribution.
In particular, when the PH assumption holds, estimation based on the Cox regression
is consistent and efficient; hence, when the PH assumption holds, we will use the Cox
regression as a benchmark. Figure [1|shows that when g is known, even though the CSD-
SVM does not use the PH assumption or the AFT assumption, the results are comparable
to those of the Cox regression, and are better than the AFT estimates, especially for larger
sample sizes. However, when ¢ is not known, the Cox model produces the smallest risks,
but its superiority reduces as the sample size grows. This coincides with the fact that
when ¢ is not known, the learning rate of the CSD-SVM is slower.

In Setting 2 (Multi-Weibull failure-time), the covariates Z are generated uniformly
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Figure 2: Multi-Weibull failure time distribution. The Bayes risk is the dashed black
line and the boxlpots of the following risks are compared: the CSD-SVM with an
RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes n =
50, 100, 200, 400, 800.

on [0,1]'° and the censoring variable C' is generated uniformly on [0, 7], as in setting
1. The failure time 7" is generated from a Weibull distribution with parameters scale =
—0.571 4+ 275 — Z3, shape = 2. The failure time was then truncated at 7 = 2. Note that
this model depends only on the first three variables. In Figure [2, boxplots of risks are
presented. Figure [2] illustrates that the CSD-SVM with a linear kernel is superior to the
other methods, for all sample sizes and for both the cases g known and uknown. However,
since the data may be sparse in the feature space, the CSD-SVM with an RBF kernel
might require a larger sample size to converge.

In Setting 3 (Multi-Log-Normal), the covariates Z are generated uniformly on [0, 1],
C was generated as before and the failure time 7" was generated from a Log-Normal
distribution with parameters u = %(0.321 + 0.5Z5 + 0.273), 0 = 1. The failure time
was then truncated at 7 = 7. Figure |3| presents the risks of the compared methods.
This example illustrates that for small sample sizes, the CSD-SVM risks are significantly
superior and converge quickly to the Bayes risk. As the sample size grows, the AFT also
converges to the Bayes risk whereas the Cox estimates does not, as can be seen by the

very high risks they produce. Note that for the Log-Normal distribution, even though
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Figure 3: Multi-LogNormal failure time distribution. The Bayes risk is the dashed
black line and the boxlpots of the following risks are compared: the CSD-SVM with
an RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes
n = 50, 100, 200, 400, 800.
the AFT assumption is correct, the CSD-SVM manages to produce better or equivalent
results.

In Setting 4, we considered a non-smooth conditional expectation function in the shape

of a triangle. The covariates Z are generated uniformly on [0, 1], C' is generated uniformly

on [0, 7], and T was generated according to the following

A+6-Z+e .Z<05
T= , where e ~ N(0,1).

10-6-Z+¢ ,Z>05

The failure time was then truncated at at 7 = 8.

In Figure [4] the boxplots of risks are presented. As can be seen, the CSD-SVM with
an RBF kernel is superior in both cases, for sufficently large sample sizes.

To illustrate the flexibility of the CSD-SVM, we also present a graphical representation
of the true conditional expectation and its estimates, as a function of the covariates.
Figure |5| compares the true expectation to the computed estimates for the case that g is
known; these estimates are based on the first iteration. As can be seen, the CSD-SVM

with an RBF kernel produces the most superior results.
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Figure 4: Triangle shaped failure time expectation. The Bayes risk is the dashed
black line and the boxlpots of the following risks are compared: the CSD-SVM with
an RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes
n = 50, 100, 200, 400, 800.
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Figure 5: Triangle shaped failure time expectation, case I (g is known). The true ex-
pectation is the blue line. The following estimates are compared: the CSD-SVM with
an RBF kernel, the CSD-SVM with a linear kernel, Cox and AFT for sample sizes
n = 50, 100, 400, 800.

To summarize, Figures showed that the CSD-SVM is comparable to other known

methods for estimating the failure time distribution with current status data, and in
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certain cases is even better. Specifically, we found that the CSD-SVM with an appropriate
kernel was superior in three out of the four examples, especially when the true density g
is known. It should be noted that even when the assumptions of the other models were
true the CSD-SVM estimates were comparable. Additionally, when these assumptions
fail to hold, the CSD-SVM estimates were generally better. The main advantage of the
proposed SVM approach is that it does not assume any parametric form and thus may
be superior, especially when the assumptions of other models fail to hold. Additionally,

it seems that the CSD-SVM can perform well in higher dimensions.
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7 Concluding Remarks

We proposed an SVM approach for estimation of the failure time expectation, studied
its theoretical properties and presented a simulation study. We believe this work demon-
strates an important approach in applying machine learning techniques to current status
data. However, many open questions remain and many possible generalizations exist.
First, note that we only studied the problem of estimating the failure time expectation
and not other distribution related quantities. Further work needs to be done in order to
extend the SVM approach to other estimation problems with current status data. Second,
we assumed that the censoring is independent of the failure time given the covariates and
that the censoring density is positive given the covariates over the entire observed time
range. It would be worthwhile to study the consequences of violation of some of these
assumptions. Third, it could be interesting to extend this work to other censored data for-
mats such as interval censoring. We believe that further development and generalization

of SVM learning methods for different types of censored data is of great interest.

Supplementary Material

The Matlab code is available for download and can be found at http://stat.haifa.ac.
il/~ygoldberg/research.html. Please read the README.pdf for details on the files in
this folder.
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A  Proofs

A.1 Proof of Theorem [1I

Proof. Since L"(D,(Z,C,A,s)) = =% (% + 32> is convex, it implies that there

exists a unique SVM solution (see Steinwart and Christmann, [2008|, Section 5.1). For all

distributions @ on Z x ), we define the SVM decision function by fg\ = }an_; MIFlG, +
€

R1o(f). We note that for an RKHS H of a continuous kernel £ with ||k||_ <1,

[fanlla < MFlo Ifaally < IlfQally, -

Hence,

Mfanlls, < Mlfonlls+Reo(for) = }g?f{/\ I £15,+Re.o(f) < A0|5,+R10(0) = Ry, g(0),

Hence [|foull, < [[fonlly <4/ RL"TQ(O) for all f € H. By Remark , L(y,0) <1 for all
y € Y and so we conclude that Rz (0) < 1 and thus |[foall, < [[foxll;, < \/; for all

distributions Q) on Z x ).

Recall that the unit ball of # is denoted by By and its closure by Bg; since| fp, Ay <
\/g we can write f € \/EB_H Since Z C R? is compact, it implies that the ||| —
closure By of the unit ball By is compact in £, (Z) (see Steinwart and Christmann,
2008, Corollary 4.31).

Since fp minimizes A Hin + Rrp(f),

M folls, + Reo(foa) < Al fealls, + Reo(fea)-

Recall that the approximation error is defined by Ay(\) = }n{t)\ £l + Re.p(f) — R p,
e 2

and thus, as in Steinwart and Christmann (2008, Eq. 6.18),
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A ||fD,>\||§-[ + Rr.p(fpa) — Ry p — Aa(N)
=A HfD,)\H?-L + Rrp(for) — A “fP,)\”?{ — R p(fpy)
=M ol + Beo(fon) = Ro(foa) + Rop(fon) = M feally, = Rep(fra)
A Ifeally, + Reo(fea) = Bep(for) + Rep(foa) = Al fealls, = Rep(fea)
=R p(fpx) — Reo(fpa) + Re.p(fpa) — Re.p(fpy)

<2 sup |Rpp(f)— Reo(f)l
1</ %

That is,

M foalls, + Brp(fop) — Ryp — As(N) <2 supflRL,P(f) —Reo(f)l (4)
£l S/ 5

Note that since L is Lipschitz continuous, |L(y, s)—L(y, s')| < cpls—s'| forall s,s" € S.
From the discussion above, we are only interested in bounded functions f & \/EB_H

Then for all f € \/;B_H we have

L(y. F(DISILy, £(2)) = Ly, 0)| + L(y, 0) < cp|f(2)| + 1 < epA +1= By

thus we obtain that for functions f € \/EB_H, the loss L(y, f(z)) is bounded.
For any € > 0, let F, be an e —net of \/;B_H Since By is compact, then the cardinality

of the € — net is

1
| Fel = N( 1B ||-||oo76> = N(Bi, |l - VA€) < o0.

Thus for every f € \/;B_H, there exists a function h € F. with || f — k|| < e, and thus
|Rrp(f)—Rrp(f)| < |Rpp(f)=Rrp(h)|+|Rep(h)—Rrp(h)|+|Rep(h)—Rrp(f)| = Ant+Bu+C,

(5)

First we will bound C,;
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Cn =|Rr,p(h) — Rpp(f)|

S%i[(l—A()é(ch,,h }_%i{l_ C|cé,)f( ))H

=1 A

+ %Z[L(O, h(Z:))] — %Z[L(O, f(Zz))]‘

i=1

= n,1 + Cn72a

where

|1 [0 200G hZ) (- A)UC £(2)
O = nZ 4(CiZ) 9(CiZ) H

IA
S =
Q

N

=
Q
=
Q
=
=

Z 10(Ci, h(Zs)) — U(Cy, f(Zy))]

e

So we were able to bound C,, by - T CLE.

Similarly, using to the property that E [o] = a for any constant «, it can be shown
that A, < 5= 4+ cre.

As an interim summary, we showed that
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1
sup  [Rp.p(f) = Rep(f)] < sup|Brp(h) = Brp(h)| + s-ae + 2ce. (6)
fE\/;BH heF. :En

Recall that the loss L(y, f(z)) is bounded by B and that by Remark [1] ¢(y, s) < B;.

We note that

(1 —=A)(C,W2Z))
9(C|2)

U(C,h(Z))
9(C|2)

B
+ L0,h(Z)) <=~ + B, =B

+ L(0,h(Z)) < e

Combining this with equation (4]), we obtain that

2 2cie
Pr ()\ ||va)‘||3-l + RLJD(fD’)\) — szp — AQ()\) Z B —77 + _l + 4CLE)

n K
2n  2ce
<Pr |2 sup |Rpp(f)—Rrp(f)|>By\/—+ —— +4cLe (by eqH)
1 n K
Il <3
1 2n  2c¢e
<Pr | 2| sup|Rpp(h) — Rpp(h)| + —=ce+2cre | > B\ — + —— +4cre | (by eq.@
heF. ’ K n K
1 2 2
=Pr|{2 (Suan + —ce+ QCLS) > B ull + % + 4cL5>
n

heF. K

=Pr (suan > B, /i) = Pr <sup \Ry.p(h) — Rpp(h)| > B, /i) .
heF. 2n heF. 2

By the union bound, the last expression is bounded by

> pr (|RL,p(h) — Ryp(h)| > B@) ,

heFe

which can then be bounded again by 2|F.|e™", using Hoeffdings inequality (Steinwart
and Christmann, 2008, Theorem 6.10); where F, is an e-net of \/;B_H with cardinality

1
Fel =N (@BH ||-|\oo,e) < oo.
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Define n = log(2|F.|) + 6, then

. 2(log(2|F:]) +0)  2ce _
Pr ()\HfD’)\Hi—i-R[”P(fD’)\)—RL7P—A2(/\) ZB\/ (Log( |n ) )—i— [é +4CL€) <e™,

which concludes the proof. O]

A.2 Proof of Lemma [1]

Proof. Note that

2 Dolite) ~gle)] <
chz (el + = ZIE g(c)|=A+B

As in [Tsybakov| (2008, Proposition 1.1), define n;(c) = K (9=¢) — E, [K (£79)].

Then n;(c), for i = 1,...,n are i.i.d. random variables with zero mean and with variance:

Var [:(c)] = E, [(mi(c))’] = B, (K (Czh_ C) — By {K (Czh_ C>D2 = B {KQ (Clh_ 0)1

:/K2 (U;C) g(u)duggm(m/K2 (U;C) du:gm(m/K2 (v)dv = Cih

where the equality before last follows from change of variables and where C'y = ¢,42 fv K? (v) dv.

Thus Var(g(c)) = By | (75 S @)’ = B, 1R(0] < S = &

By the Cauchy—Schwarz inequality we have that

Ellgle) = Elg(o)]]] < \/E [l9(c) = E[3(0)]I”] = VV(3(0)).

Hence E [|§(c) — E [§(c)]|] < /E:.Therfore, by Markov’s inequality,
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For the second term, as in [T'sybakov| (2008, Proposition 1.2), we have that
1 8
E—Z|E g(c)| < Cyh
n

where Cy = % oK (v)] lv]” dv < oo, and for some 7 € [0, 1].

m!

In conclusion, we showed that

Pr —Z\gcz g(ci)| > e+ Cy - h6>

<Pr —Z\gcl gle)l|+ = Z|E glc)| > e+ Cy- h5>

SPT —Z|gcl CZ)H_I_CQ h6>€+02 hﬁ>
Cy
=Pr —Z\g ¢)— Elj(e)]] > e> <\
where h is the bandwidth. O

A.3 Proof of Theorem 2

Proof. Note that the proof of this theorem is similar to the proof of of Theorem [l|and thus

we will only discuss the parts of the proof where they differ. As in Theorem [I, equation

Bl
M foulls, + Rep(foy) — Rip — As(N) < 2(An + B, + Cy)

where
A, =|Rrp(f)—Rrp)|, B, =|Rrp(v)—Rrp(v)|, andwhere C,, = |Rrp(v)—Rr p(f)],

Since A, does not depend on the data-set D, the same bound holds as in the proof of
Theoreml 1] that is, A, < §= + cre.
We bound ), as follows:
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Cn =|Rpp(v) — Rrp(f)|

1~ [(1 = A)UC;, v(Z)) 1 — [(1 = A)UC;, (Z))
<2 [ 37 } n 2 [ 32 } '
e SIAREANEES piA f<zi>>]‘

= n,l + Cn,2

Using the same arguments as in Theorem [I}, we can bound C,, by %= +cre. Note that

the only difference is in the denominator of (), ; since é < % and é < %

Recall that the loss L(y, f(z)) is bounded by Bs. Define Ry, p 4,(v) by

Rupy() =13 {(1 - A;()ézc;;)v(zi))} v > IL(0.0(Z))]

i=1

In other words, Ry, p 4(v) is the empirical risk with the true censoring density function g.

We bound B,, as follows

B, =|Rr.p(v) — Ryp(v)|

<[Rip(v) = Rrpg(0)] + [Ripg(v) = Rrp(v)] = Buy + Buys

where

(1—AY(C,v(2)) (C,0(2)) 5 i
9(C|Z) + L(0,v(Z)) < “9(Cl2) + L(0,v(2)) Sﬁ +B,=B
and where
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By —|RLDg("U — Rpp(v)| =

e
S

1=

cl,v(Z»( (Ol,z) B (Cj|Zi))H
\

g
.n H“C"’”(ZZ’”( a5

1_ 9(CiZ;) — 9(Ci| Z;) B, <~
— [ 9(Ci| Z:)§(Ci| Z) ] < 9K, 121 19(CilZs) — g(Cil Zy)]] -

7

I
o S
:I—‘

=

Note that these inequalities hold for all functions v € F. C A\~*By. We would like

to bound the last expression using Lemma . By equation |3| let h = /m_TlH, choose «

such that
< (C1)F (2BCo)Fn 3 < a < 2(Ch)7 (2BC) ¥ n
and
20+1 1 1
In(a) = 62& 0 + §ln(Cl) - §ln( n) + —6ln(2BC’2)
a+Cy-hP
and let n = B ;KCQ ") , then by Lemma

n

Pr(Bus > ) < Pr (ﬂf—n > 1(Ci2) - 9(CZ0)) > n>

=1

n «a - hB
:Pr(%ZHQ(QIZ) scizy) > 2t ;Kf h)>

1 .
=pr(- > 13(Cil Zi) — 9(Cil Zi)]) > a+ Cs - h)
=1
Cl o -0
nha? ~ C

We need to bound the term B, 1(v) = |Rp p(v) — R p4(v)|. By the union bound, for

all >0
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Pr(supBa(0) 2 By L) = Pr (sup |Rert0) = Runal)] = By [2)
< 3P (1un(e) = Fupyo)] = B\/;>

vEF:

We showed that % + L(0,v(Z)) < B. Hence by Hoeffdings inequality, the

last term can then be bounded again by 2|F.|e™*, where F. is an e-net of \/;B_H with

1
Fel= N (\gBH ||-||oo,e) < o,

Define p = log(2|F:|) + 6, then

cardinality

In(2|F: 0
Pr <Suan,1('U) Z B M) S 679
veFe 2n

In conclusion we have that

21 3c
r ()\ HfDJ\Hi[ + RL,P(fD)\) — RE,P — A ()\) > B + ?l + 4CL€ + 277)

n

3¢
<Pr(2 sup |Rpp(f)— RrLp(f)| >B\/ +?l+4cL5+277
£l </ %
3616

3
<Pr |2 (5up|RL7p(v) — R p(v)| + SR e + 2cL5> > B\/ Py Na +4epe + 27])

vEF,

2u
<Pr|2 (suan,l(v) + Bng(?})) > By — + 27])
vEF: n
<Pr (suan’l(v)—i—Bng( ) > By|— —1—77)
vEF: 2n

2
<Pr (sume > B W) + Pr (suan,g(v) > n)

vEF: 2n veF:

<e 41 e =291

and the result follows. O
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A.4 Proof of Theorem [3

Proof. Case I
By Theorem [1]

2og 2N (B [+ ) +20 20,

o K —|—4CLE

M foally+Rep(fox)—Rip—Ax(N) < B

with probability not less than 1 —e~%. For any compact set S =[S, S] C R, Both L and

[ are bounded and Lipschitz continuous with Lipschitz constants ¢, < @ and ¢ = %

Hence,

M foalls, + Rep(foa) — Ry p — As(N)

. \/ 209N (B, e V30) +20 20

4
n K+CL€

€
n K72 T2

SB\/Zlog(2.7\/'(BH, -l » VA€)) + 26 N 4e N 8(S+ 1)

M e

_B\/2zog(2N(BH, -l s VA€)) + 26 n

n
where M = % (% 4+ 2(S + 7).

By the assumption log(N(By, |||l »€)) < ae~?’. Hence:

10g(2N (B, ||llo » VA€)) = log(2) + log(N (B, |||l - VAe)
<log(2) +a (\/Xe) o < 2a <\/Xe) 72p.

Choose € = (753)ﬁ <2a)ﬁ % Then

n
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By and ,

Mfoally, + Rep(fon) — Ry p — Az(N)

1 1 2p .
o LT EE) Ty

w(@ @) 5| M ey 20\
=B n TV +ﬁ(§) (?) ()
Via ()7 ()7 o (20) 7
o[ ST ot oy ()
- e ()T ()T

Recall that By = ¢;A72 + 1 and B = Bl + By, where B; is some bound on the

derivative of the loss. Since 0 < XA < 1, then 1 < and therefor By < e A\™72 4 A772 =

f?
A (e, +1) < AR5 +1). Barlier we defined M such that K = g7 Thus,

Sk T 72 8 A 2 a

T

pe B, 1 (2(S+r)+r2):Bl(M72—8(5+r)) 1 (2(5+—7)+72)

T2

VABL(M72 —8(S + 7)) + 8 (M) _ Bi(Mr?) +8+16 ()

N
8V - 8V VA
S:;T) ]

where we define N = Bi(M7)/g + 1 + 2 (
Hence we can bound @ by

)7 Y2 20y M p 20 %
A \n) o T2 n
7= [ 2a 2+2p Mp 2a '\ 2+2r N 20

)" e (%) +2N( )| A
N [, (20)\FF | Mp (20\FE] N [20

)5 PCG)TRG) T R

(244 (559) (L+2S+2T)‘1. Note that M = & (& +2(5 +7)) <

04244 (—) = 2N. Consequently, for B; > = — (2 +4 (S )) ( +25 + 27’) 1,
we have that M < 2N or ﬁ < 1. Note also that <5> (1+p) < 3, hence:

DO 3

IN
NS

(
(
(

IA
NS

Sl= o=

Choose By >

\‘wl ~

Bi(MT1?%)

_l’_
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P\t N [2a) z2r N /26 P\ 155
Pyrmr & (22 2+ )+ /< (2 o (2
(2) ﬁ(n) (+Np)+\/x n_(2> <p+)\/X n
N (2N, 2
BRVAN n n
Since As(\) < e\ for constants ¢ > 0, and v € (0, 1],
1
N 2a '\ 2+ 20
— R p<cN+—1|6(— — 10
LpSC +\/X (n) n] (10)

M foallz, + Brp(foa)
We would like to choose a sequence A, that will minimize the bound in (10). Define

1
)2+2p +4/ 1—0} . Differentiating W with respect to A and setting to

2a

W(N) = exr+ 2% [6/(2

zero yields:
AW (\) 1| f2a\FE 20
=cy\7 —NA 6 — —1| =0
dA “ 2 i [ ( n ) * n]
=
1
1 2a\ 2+ 0
ANTTE=ZNAT2 [6 <—a) + —]
2 n n
1 wa\Fs 28]\ 7T (1 1\ 7T
I T2 212p
2cy n n n n

=\ o(n_(1+p)(127+1)
Since the second derivative of W (with respect to A) is positive, A is the minimizer.

by (10)),

n

n

29] ) >1—e?  (11)

24\ 7%
)

Pr (RL,p(fD,A) — Ry p<cAN + 7 [6 (
By the choice of A, the bound in equation can be written as
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1

. S 1 1 1 1
cn” @ REFD 4+ Np 2@ e @D [6 (2a)%F2» n”~2%2% + (20)2 n" 2
_ ol 2v(A+p)+p
=cn @+ + N - 6 (2a) PR n ~ D + N (29)2 n~ 20+p) (2v+1D)
S A D . R P T
<cn @T@FD + N -6 (2a) 242 - @F@&FD) + N (29)2 n~ TP (v+1)
[ S 1 1
=n  0+p)y+D) (C—I— N -6 (2&) 242 + N (29)2)
b
Q(l + \/g)n (1+p)(27+1)

where () is a constant that does not depend on n or on 6.
1
In conclusion, by choosing a sequence )\, that behaves like n~ 0+»@+0 | we have that

the resulting learning rate is given by

Pr <RL,P<fD,,\) Ry p <Q(L+VO)n W) >1—¢f

Case 11
By Theorem [2]

200g(2N (/4 Br, |, ) + % 0

M foalls+Bep(foa)—Ry p—Ax(N) > B - I

+4cre+2n

2(a+Cy-hB
w and with probability not greater than 2e=?. Choose ¢ =

(2)™7 (22)%% LM =2 (2145 +7), Bi> S (6+12(55)) (& 45 +47)

where 1 =

n

and define N = B4 MT BT 442 (S+T) , then as in , a very similar calculation shows

that
24\ T 20
6 <—a) /=
n n

Choose h = kn 7 as in and choose « such that In(a) = 2@—219 + 1In(C) —

N
A HfD,/\HiL + Rrp(foa) — Rpp <N+ —=

VA

+ 2n.

ln(n) + %ln(?ﬂog) as in Theorem . Then by the definition of 7,
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_2K2 (a+ Cy - h?)
n= B,
2K? <a + Cy - KBTf%)
_ 5
L 2K2T (C))F (2BCh)% . ZKZCQI#
2

Hence,

A ”fD/\HH + Rep(foa) — Rpp <A+ 7

28+1

20 4K? (6 28 (Cl)% (2ﬁ02>% + CQHB>
+

1
2 2+42p
6 (—a) +4/ =
n n

1
Similarly to Case I, choosing A, o« n~ @+ minimizes the last bound (note that the

N
<c\N 4+ —

VA

8
Bin2+1

choice of A, does not depend on 7). Hence that the resulting learning rate is given by

Pr(De (ZxW)" : Rop(foxr,) — RLP Q1+ \/_) —min( (et 26+1)) >1—¢"

where () is a constant that does not depend on n or on 6.
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MNP DMYTN DD NNRONNI TNNN XY XUYND MDYN DX DWINNND N RONT . NNIND
YNINNDD AT NONIN NTHNIND OXTPHRNN NN I NTIAY DY NDN OMIND

T2y ,SVM-n nUowa vy mysnNa T 5w mmnn NOMNN IR TNIRD NN NOY NI0NN
NYLNNOND MNINN NPPNA POW NTIANN 192 PON .Current Status Data NN OMNM
TPONDIVIND WP PN NN TINDD 10 SVMs .napya poiy 0I92) ,NYNINN DY DY
TOPYNRI PTINY WYY SVM mYowa 9m9o .0)p N90INY PPINNN NDX0N YIND onda
92NN YT T TOIN TXPND NITINAOVP W, NONIION T -1 INNND .NDINNN TOIN NINPN
DILLVLON NOPTHR C NVIXN MNWNA INIONN TOIN TPIPND D PTHID NN T YA DY
NIONY NN I TIXN DY NN INONN YN I KXY TN, A =T <C}Pnoun

09NN SPNAY DN NODY MY, IPNPNN TOINN TISPNAY DN (TOONN NYMIN)
WTNN

DY, TP TOIN NIXPNAT DIVNNYN NN ,MIMNN NINNND NTHHNRI DIIMNYN NDRY PNPON
TPXPNS NN NXINNAD NN DY YT TOOY DN DM NVINN TIXPND NN NN NOMNN

TOAN MXPNAD DN YPANND NION NN OMIYYIN NX,CSD MM My Mm-SVM-n nudnnn

DN NMYII N NP NMYD NN INNIY XN NPIYN NRNIN .DIP NIDINDY , 0NN NNIONN
LMD PING NRIN I TPYIY 5 PNV OINDIN NN YD

NP PVNINN HNVN DY MDAXN THIXPND YD NNND 1N ONN N NIPNI N2 NN NIV
I AUND S NDTD VYT NN INSN PIT NNDONN 0D NMIND JNN 1ON MY DY AT
DX9D NVYNN ,PNDN NN NN TN DY .THN NAPN NN N NNIN,NNT DY .IPIND 7Y NYIAP)
AT MNDANT TWND (2)-) IYIT> NNIND AT NNOINN IWND (1) : DIPN NWO MDD PONIN NN
LIV DPN NTIND JOT MNDONN 1AW NIPNI .MDANN NN TIIND IO IYIT NN INRIND
SN MNYNY PIXY W .PYI) MDD NPIVNI XD MY NITYI MDINN NN NVTNIN
NN . MPAY TPIPND NTHND MM MOLOWA WHNRNWND I 1991 IINND ION INNYI
DN NIYONY NXINY T O7Y NPIAPY PNDIN VINY DMIPHRN NIVN TNNX DY NNIRNND PNNON

.DMIPNN P TR D30 T ANP NIAYIN 191,02 112700 DIONND NWTNN TOINN NINPND

ININ NPNOIMID NINYI MINK MNMP MYNT NYNIND NIV MDY NXR NV DPDD
NNVONN TWUNRD TN DXV DN NPNNDY ,1MINMP MVLIVI INNYN-NIL DOV NYINY
.O”T71D°1-19 DN 0YPI0VNN OINYWNN AWNDI IX NIV NNV NYIND NN YIINNDD DT



95870

YTNRN 0N ,MTIVN 0NN o 03N Current Status Data »ON ©M0MINN 0NN
NN NN NX .C NN I YOP IX T T OXD NN T YNINNDD YPIT 2200 PHRID TN

NMNY Y521 ,MNMN NOMNN IR NTMIX IWN N3 NON ONMD Support Vector Machines

TOON TUNPNAD DN YPIAND NIOON NWIN VY NYIAPNN IWPN THISPND DIVNID DTN
SN NI NN AN PIND WO AIWPN TPXPNAOY 1IRIN .OIP NADINAY ,0MM2 NMIONN
NNOYN MY ,TPIHRND NN NININD NOIDNND I WP THIXPNIY ,DXWTN DPNINR NNPNWY
990N MNN ,DPDY .NVWYN DY TINDN A8P NN NIAYON LID 10D . MHNANDN M DY DT
-2 NOY NWRINY INARIN .NINNND MY DN IR DY) DY DINNIN NN NPT NPININD
NPN YNINDD JOT NNVONN TUNRD TNPNI DXV DN NN, MNP MOOWY INNYN

LD TNMI-19 DN DXP2DNN DINWNN TYNRD IN NMIVNID NNIVNN NYIN

AN PEPN

21723 HY NI 1N ,0NI00 YIVR NYNND TY YOIN TYWN NN DMMIYNN NX MTIY MM
PIT NNOANT DTN INIPIAN IYPNL M ,2DNN VPN NNON YW Npop ORIIN IWpna
,DIPN 12902 .09 ONRIDIN IYPNDY ,OMMIND PHNI NYIDN MDWYN NOYA NN YIINDD
NN YNNRNDD NI PVITND MIAXD I ND IV ,0INNN OPN MTIYN DINNND DN
DONIPIY DOIANNND DN Y DNON N0 ONT NN N NV ,1PONAD .I0N YNNIV

DN P T 0T NTIPY ONVIDND (LIS IN) NPT Y35 oMay ,Current Status Data
DONNI MNNY DTN NI ,1PHDD DY) NNAY NN NOW NIVNN .NXD IN,YNINN 92D YIINDD
DOWINN NN ,VI9 . PVLDYVOLON NTNIYN DINNNY MOV NIYA Current Status Data non

.Current Status Data »vn 0Ny MY Support Vector Machines (SVMs) S nw»)

ANP ,MYPA HON NVWN NN DY»Y 1Y TON Ny DNNYN 0N SVMs-2 nnan

PINSD MOIdNN NNV NV NVIVN DY NYDONN N> PN NVXVN YV NN
SINDIVINND

PIT Y2)D PRI TN YRN DNAY DN OINN 0PN Current Status Data Non 01N
N-1 031571 OINNIN N PONNPT 1PIND .C NNINN I WP IN T T oD NN T YyINDD
omwn v P Z e R s ; D={(Z,,C,,A),....(Z,,C,,A,)} nnsnn mwow
My [0, 7] = Y yopa 059y Yapn C NMKN MNYN PYOW IR T y1INNDD 9T 007200
oM v M Do CA=ILT <C} >y 971 SNoNN DIvLON NOPTINY , 7 >0 INYHON

AVIDY ,MPATH MINND ,AMNT HY PN 1D DIIND PHNDH MNONT Y9101 19 MO

C -1 ,2070 D171 NYANY TY JLIDH DIND NDWNN NYN I XIN T, )OION PN, NPT
NYPY XN YN Y MINOY X IN NN PITAY NIN DY PN DN 12 OXIPN AT XN
AT P NON IIXY YNNHDD JATA D9N XD NXY NN T Y NINDD 1IT NNDONND NN TIIND
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