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Continuous Statistical Models: With or Without Truncation
Parameters?

Valentin Vancak

ABSTRACT

Life time data are usually assumed to stem from a continuous distribution supported on

(0, b) , b ≤ ∞. The continuity assumption implies that the support of the distribution

does not have atom points, particularly not at 0. Accordingly, it seems reasonable that

with an accurate measurement tool all data observations will be positive. This may lead

to conjecturing that the true support is truncated from left and is in fact has the form

(γ, b), γ ≥ 0 , with γ unknown. Consequently, under such a situation, we will face the two

typical errors (of False Models). To describe these we let Model I denotes the model which

is linked with the assumption that the true support is (0, b), while Model II denotes the

truncated model for which the true support is (γ, b), γ ≥ 0. We shall therefore say that a

False Model I error has occurred if Model I has been incorrectly used for inference while

the correct model is Model II. False Model II error is defined similarly. The question that

naturally arises then is which of the two types of errors is more severe?

Two main settings are discussed in this work. The first setting concerns general sta-

tistical continuous models. For this setting we consider the following two scenarios. First

we assume that there is a left truncation when in fact there is none, i.e., the actual model

support is S = (0, θ) where θ is a parameter of the model. We show that this type of

error do not cause any severe deficit in the estimation process in terms of asymptotic ac-

curacy and efficiency. This result stems from the fast rate of convergence of Bar-Lev and

Boukai’s estimator (Bar-lev and Boukai, 1985) to the function of interest. However, we

demonstrated that in the converse case, when we assume that there is no left truncation,

but in fact the model support is S = (γ, θ), Tate’s estimator (Tate, 1959) does not con-

verge to the function of interest. In fact, in this case Tate’s estimator has a constant bias

term, and therefore, for large left truncation, Tate’s estimator will result in inaccurate

and inefficient estimation.

The second setting concerns the exponential families of distributions and the MLE

for the natural parameter θ. We present two examples when assuming that there is left

truncation when actually there is none does not results in any substantial inefficiency. This

IV



result stems from the fast rate of convergence of X(1) to the left boundary 0. We show

that the MLE for the natural parameter θ that was derived Model’s II support converges

to the function of interest; it is asymptotically unbiased and efficient (the MSE meets the

Cramer-Rao Lower Bound). Moreover, we show that the converse situation is inefficient

as is exampled in Setting I; assuming that there is no left truncation where actually there

is, results in an inaccurate and inconsistent estimator that converges almost surely to the

wrong function. We pose as an open question for further research the generalization of

the results to the whole exponential families.
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1 Introduction

Life time data are usually assumed to stem from a continuous distribution supported on

(0, b), b ≤ ∞. The continuity assumption implies that the support of the distribution

does not have atom points, particularly not at 0. Accordingly, it seems reasonable that

with an accurate measurement tool all data observations will be positive. This may

lead to conjecturing that the true support is truncated from left and in fact has the form

(γ, b), γ ≥ 0 , with γ unknown. Consequently, we can discuss two models. The first model,

which we denote as Model I is the one for which the true support is (0, b). The second

model, Model II, denotes the truncated model for which the true support is (γ, b), γ ≥ 0.

Note that Model I is included in Model II. We shall therefore say that a False Model I

error has occurred if Model I has been incorrectly used for inference while the correct

model is Model II. False Model II error is defined similarly. The question that naturally

arises then is which of the two types of errors is more severe?

It seems reasonable that even if (0, b) is the correct support then the use of (γ, b) will

not result in much loss of information. While if (γ, b) for some γ > 0 is the correct support,

there will be substantial loss of information. This claim can also be justified in term of

sufficiency. To realize this, let X = (X1, ..., Xn) be a size n random sample taken from

the population being studied. Assume that Model I depends on an unknown parameter

θ (possibly a vector), and is associated with a minimal sufficient statistic Sn = s(X).

Model II, which obtained by a truncation of Model I, is therefore parameterized by (θ, γ)

and is associated with the minimal sufficient statistic (Sn, X(1)). Note that (Sn, X(1)) while

being minimal sufficient for Model II, is still sufficient for Model I; whereas Sn while being

minimal sufficient for Model I, is not even sufficient for Model II. Hence False Model I

error is more critical since inference is based on a statistic which is not sufficient, while

for False Model II error inference is based on a sufficient statistic, not minimal though.

Two main settings will be investigated in this work. In the first one, we assume that

the density function known up to a right truncation parameters. In this setting, under

Model I, there is only right side truncation parameter θ. Under Model II, we assume

also left truncation. For this setting, two candidate estimators (Tate, 1959; Bar-lev and

Boukai, 1985) will be compared by their finite-sample bias and MSE, as well as their

asymptotic efficiency. We also compare these estimator for the case that Model II (two

side truncation) holds.

The second setting deals with two representative distribution from the exponential

family of distributions with possible left truncation. Here, Model I holds when no left

truncation is introduced, and Model II holds when left truncation exists. In this setting

the investigation will focus on the effects of left truncation on the MLE of the natural

parameter θ. Both asymptotic and finite-sample behaviour of the estimators will be

investigated.

As stated above, our main concern is the cross-model behaviour of the estimators. In

other words, we are interested in finite-sample and the asymptotic properties (distribution
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function, expectation and MSE) of each of the estimators under the “wrong” model. More

specifically, for the right truncation with possible left truncation setting, we are interested

in the behaviour of Bar-lev and Boukai (1985) (hereafter abbreviated BB) estimator when

there is no left truncation, and the behaviour of Tate estimator (Tate, 1959) when left

truncation is introduced.

In fact, when Tate’s estimator is considered, but there is left truncation, we will show

that the estimator will have an asymptotic constant bias term, i.e., the estimator does

not converge to the function of interest. Therefore, Tate’s estimator is inconsistent w.r.t.

Model II support. In this case, it is obvious that the asymptotic relative efficiency of

the estimators will tend to infinity due to the constant bias term. As such, the main

interest and concern will be the behaviour of BB’s estimator w.r.t. Model I support. Note

that in BB’s estimator, left truncation parameter is estimated with the minimal order

statistic X(1), which converges in probability to 0, therefore, the bias of the BB’s estimator,

when such bias exists, will asymptotically vanish, and the estimator will converge in

probability to the function of interest. Therefore, we should take into account (i) the rate

of convergence and (ii) the relative asymptotic efficiency of the estimators. Hereafter, in

the case of model misspecification, while considering BB’s estimator when in fact Model I

holds, our main interest is the ”price” that we pay (in terms of accuracy and efficiency of

the estimation) if we are estimating the left truncation parameter whilst the left support

bound is 0.

In the exponential families distributions setting, the same scenarios will be considered

for the maximum likelihood estimators. As in continuous statistical models setting, our

main concerns will be with the MLE derived under Model II support, while in fact Model I

holds. The converse case should not yield any surprises due to the expected constant bias

term that would cause asymptotic inefficiency and convergence of the estimator to the

wrong function. Therefore, in this setting, as in the previous one, the main effort will be

directed to the investigation of the properties of MLE derived under Model II support,

while Model I holds. Nevertheless, the converse situation in which the MLE derived under

Model I support while Model II support holds, will also be considered.

The work is organized as follows. The analysis of continuous statistical right truncated

models with possible left truncation is presented in Chapter 2. The main focus of this

chapter is to estimate the tail probability and the distribution’s expectation w.r.t. the

two different supports. In Chapter 3 we discuss the exponential families with possible

left truncation. The chapter focuses on both finite-sample and asymptotic behaviour of

maximum likelihood estimators for the natural parameter of the exponential and Erlang-

2 distributions. Concluding remarks appear in Chapter 4. All proofs appear in the

Appendix.
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2 Setting I: Continuous Statistical Right Truncated

Models with Possible Left Truncation

This chapter is organized as follows. In Section 2.1 we present the notations for the whole

chapter. Afterwards, in Section 2.2, we present the general form of the estimators and its

density function w.r.t. two possible supports. Next, in Section 2.3, we perform the analysis

of the tail probability function for the uniform case. In Section 2.4, the same analysis is

done for a Beta distribution example. Finally, in Section 2.5 we analyse the estimators

for the expectation of uniform distribution. Conclusions can be found in Section 2.6. All

computations of this Chapter appear in Appendix A.

2.1 Construction and Notations

The purpose of this section is to present the notations and preliminary calculations.

Note that the density of any continuous distribution with possible left truncation can be

decomposed into two basic functions: The normalizing constant g0(γ, θ), and the invariant

term h(x).

Let h(·) be a positive integrable function over [0, ∞). For any 0 ≤ γ < θ define:

gk(γ, θ) =

∫ θ

γ

xk h(x)dx, k = 0, 1, 2, . . . (1)

Using (1), we construct the p.d.f. of the continues type random variable X as:

f II(x; γ, θ) =
h(x)

g0(γ, θ)
I[γ < x < θ]. (2)

Note that with the notation is (1), the moments of X are easily defined by

E(Xk) =
gk(γ, θ)

g0(γ, θ)
, k = 0, 1, 2, . . .

In particular the mean of X is

E(X) =
g1(γ, θ)

g0(γ, θ)
.

The c.d.f. of X is given, for any τ ∈ R, by

Fη(τ) ≡ Pη(X ≤ τ) =
g0(γ, τ)

g0(γ, θ)
I[γ < τ < θ] + I[θ ≤ τ ].

The tail probability is given by

Pη(X > τ) = 1− Fη(τ) = I[τ ≤ γ] +
g0(τ, θ)

g0(γ, θ)
I[γ < τ < θ].

3



Here, γ and θ are possible unknown parameters of f(x; γ, θ). Accordingly we consider

two possible models:

• Model I: γ ≡ γ0 = 0 known, while θ > γ is an unknown parameter, so that

η0 ≡ (γ0, θ) designates the model’s only unknown parameter, θ.

• Model II: Both γ and θ are unknown parameters, 0 < γ < θ, so that η ≡ (γ , θ)

designates the model’s two unknown parameters.

Let X = (X1, X2, . . . , Xn) be a sample of n i.i.d. observations from f(x; γ, θ) in (2), and

let X(1) ≤ X(2) ≤, · · · ≤ X(n) denote the corresponding ordered statistics. It is a standard

exercise to show that under Model I, the minimal sufficient statistics (MSS) t(X) for

η0 = θ is t(X) = X(n). Similarly, it can be shown that under Model II (with η ≡ (γ , θ)) ,

the MSS is t(X) = (X(1), X(n)).

Under Model I, the p.d.f of the MSS statistic t(X) = X(n) is readily available

f IX(n)
(t) =

nh(t)
(
g0(0, t)

)n−1(
g0(0, θ)

)n I[0 ≤ t ≤ θ],

whereas, under Model II, the p.d.f of t(X) = (X(1), X(n)) can be shown to be

f IIX(1),X(n)
(y, t) =

n (n− 1)h(y)h(t)
(
g0(y, t)

)n−2(
g0(γ, θ)

)n I[γ ≤ y ≤ t ≤ θ].

Finally under Model I, it can shown that the p.d.f of t(X) = (X(1), X(n)) is

f IX(1),X(n)
(y, t) =

n (n− 1)h(y)h(t)
(
g0(y, t)

)n−2(
g0(0, θ)

)n I[0 ≤ y ≤ t ≤ θ].

2.2 Estimators

Let ξ(η) be any estimable function of the model’s unknown parameter η. For instance,

ξ(η) = Eη(X), or ξ(η) = Fη(a), for some fixed a ∈ R (see Tate, 1959, and Bar-lev and

Boukai, 1985, for specific expressions for both models).

Based on the sample data X = (X1, X2, . . . , Xn), we are interested in constructing a

UMVUE q(t(X)) for ξ(η). Clearly, this estimator satisfies

Eη(q(t(X))) = ξ(η).

Tate (1959) considered this problem under Model I (i.e., η0 ≡ (γ0, θ) and t(X) = X(n))

and obtained that the general form of the UMVUE for ξ(η0) = ξ(θ), is

qI(X(n)) = ξ(X(n)) +
ξ′(X(n))g0(0, X(n))

nh(X(n))
,

4



whenever the derivative ξ′(θ) = ∂ξ(θ)/∂θ exists and is continuous almost everywhere on

the support Θ = {(0, θ) : a < θ < b}.
Example for Tate’s estimators include

Example 1. Under Model I, if ξ(η0) = Eη0(X) = g1(γ0, θ)/g0(γ0, θ), with known γ0 = 0,

it can be shown that

qI(X(n)) =
g1(0, X(n))

g0(0, X(n))

(
1− 1

n

)
+
X(n)

n
.

The computations for this example can be found in Appendix A.1.

Example 2. Under Model I, if ξ(η0) = 1−Fη0(τ) = g0(τ, θ)/g0(γ0, θ), with known γ0 = 0,

and τ ≥ γ0, one can show, using the Leibniz integral rule, that the general form of Tate’s

estimator is:

qI(X(n)) = 1−
(

1− 1

n

)
g0(0, τ)

g0(0, X(n))
. (3)

Similarly, Bar-lev and Boukai (1985) consider the same estimation problem, but under

Model II (i.e., η ≡ (γ, θ) and t(X) = (X(1), X(n))). They showed that the general form

of the UMVUE for any estimable function ξ(η) ≡ ξ(γ, θ) is

qII(X(1), X(n)) =ξ(X(1), X(n))−
g0(X(1), X(n))ξ1(X(1), X(n))

(n− 1)h(X(n))

+
g0(X(1), X(n))ξ2(X(1), X(n))

(n− 1)h(X(n))

−
g2

0(X(1), X(n))ξ12(X(1), X(n))

n(n− 1)h(X(1))h(X(n))
,

(4)

whenever the partial derivations ξ1(γ, θ) = ∂ξ(γ, θ)/∂γ, ξ2(γ, θ) = ∂ξ(γ, θ)/∂θ, and ξ12(γ, θ) =

∂2ξ(γ, θ)/∂γ∂θ exist and are continuous almost everywhere on Θ = {(γ, θ) : a < γ < θ <

b}.
Examples for BB’s estimators include

Example 3. Under Model II, if ξ(η) = Eη(X) = ξ(γ, θ) = g1(γ, θ)/g0(γ, θ), using the

Leibniz integral rule, one can derive the general form of BB’s estimator:

qII(X(1), X(n)) =
g1(X(1), X(n))

g0(X(1), X(n))
.

The computations for this example can be found in Appendix A.2.

Example 4. Under Model II, if ξ(η) = 1 − Fη(τ) = ξ(γ, θ) = g0(τ, θ)/g0(γ, θ), τ ≥ 0,

one obtains that

qII(X(1), X(n)) =

(
1− 1

n

)
−
(

1− 2

n

)
g0(X(1), τ)

g0(X(1), X(n))
.
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2.3 Analysis of the Tail Probability Function Pη(X > τ) for Uni-

form Distribution

The analysis in this Section focuses on model misspecification, where the properties of

interest are (i) the estimator’s expectations and (ii) the estimator’s MSE w.r.t. the incor-

rect support. In other words, what is the deficiency (if there is one) when we derive the

estimators w.r.t. Model I support while actually Model II support holds and vice versa.

Let X1, ..., Xn be a sample size n ≥ 4 from U(0, θ), where θ is an unknown right

truncation parameter. Before we introduce the appropriate estimators for this problem,

we construct the relevant density functions.

Note that the density function for a uniform random variable U(0, θ) is given by

f I(x; γ0, θ) =
h(x)

g0(0, θ)
1{0 ≤ x ≤ θ} =

1

θ
1{0 ≤ x ≤ θ} .

The function of interest w.r.t. Model I support, for any 0 ≤ τ ≤ θ, is given by

Pη0(X > τ) =
g0(τ, θ)

g0(0, θ)
1{0 < τ < θ} = 1− τ

θ
1{0 < τ < θ} .

The function of interest w.r.t. Model II support, for any γ ≤ τ ≤ θ, is

Pη(X > τ) =
g0(τ, θ)

g0(γ, θ)
1{γ < τ < θ} = 1− τ − γ

θ − γ
1{γ < τ < θ} .

Finally, the density function of the order statistics can be written as follows. With respect

to Model I support, i.e., γ = γ0 = 0 such that S = (0, θ), the joint density of the vector

of order statistics (X(1), X(n)) is given by

f IX(1),X(n)
(y, t) =

n(n− 1)h(y)h(t)(g0(y, t))n−2

(g0(y, t))n
1{0 ≤ y ≤ t ≤ θ}

=
n(n− 1)(t− y)n−2

θn
1{0 ≤ y ≤ t ≤ θ}.

(5)

In order to compute cross-model properties of the estimators, we have to present some

functions of interest w.r.t. Model II support, i.e., when γ > 0 and S = (γ, θ). The density

function of the random variable w.r.t. Model II support is modified and given by

f II(x; γ, θ) =
h(x)

g0(γ, θ)
1{γ ≤ x ≤ θ} =

1

θ − γ
1{γ ≤ x ≤ θ}.

Due to the density function modification, the joint density of the following vector (X(1), X(n))

6



is given by

f IIX(1),X(n)
(y, t) =

n(n− 1)h(y)h(t)(g0(y, t))n−2

(g0(y, t))n
1{γ ≤ y ≤ t ≤ θ}

=
n(n− 1)(t− y)n−2

(θ − γ)n
1{γ ≤ y ≤ t ≤ θ}.

(6)

The density of the maximal order statistic X(n) w.r.t. Model I support is

f IX(n)
(t) =

ntn−1

θn
1{0 ≤ t ≤ θ}.

Using these densities, we are now ready to present the estimators. Tate’s UMVUE is

given by

qI(X(n)) = 1−
(

1− 1

n

)
τ

X(n)

, 0 < τ < X(n). (7)

Its variance w.r.t. Model I support is given by

MSEI
(
qI(X(n))

)
= V arI

(
qI(X(n))

)
=
(τ
θ

)2 1

n(n− 2)
.

Tate’s estimator variance tends to zero in a polynomial rate of order -2, i.e., V arI
(
qI(X(n))

)
=

O(n−2). In order to compute the cross model asymptotic efficiency, we have to calculate

Tate’s estimator MSE w.r.t. Model II support as well. The calculation of Tate’s estimator

expectation w.r.t. Model II support yields the following complicated result:

(n− 1)τ(θ − γ)−n
(
θn
(
γ
θ

)n
B γ

θ
(1− n, n)− πγn csc(πn)

)
γ

+ 1 (8)

where csc of some variable x is the cosec function which is defined to be sin−1(x), and

B γ
θ
(1−n, n) is incomplete Beta function such that γ

θ
is the upper bound of the variable’s

support, i.e.,

B γ
θ
(1− n, n) =

γ/θ∫
0

x−n(1− x)n−1dx.

The second moment of Tate’s estimator is even more complicated and given by

γn−2

(
γ
(
θ
γ
− 1
)n

(γθn+ (n− 1)2τ 2)

)
θn(θ − γ)n

+

γn−2

(
θ(n− 1)τ (2γn+ (n− 1)2τ)

((
γ
θ

)n ( θ
γ

)n
B γ

θ
(1− n, n)− π csc(πn)

))
θn(θ − γ)n

.
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The MSE of Tate’s estimator w.r.t. Model II support can be obtained from the two

results described above. Note however that the bias term does not tend to zero and hence

neither the MSE.

We are now ready to present BB’s estimator, which is given by

qII(X(1), X(n)) =

(
1− 1

n

)
−
(

1− 2

n

)
τ −X(1)

X(n) −X(1)

, X(1) < τ < X(n) (9)

We computed the expected value of BB’s estimator w.r.t. Model I support, and sur-

prisingly it can be shown to be unbiased estimator. Therefore, the mean-squared-error of

BB’s estimator equals its variance which is given by

V arI(qII(X(1), X(n))) =
θ2(n− 1)− 2θnτ + 2nτ 2

θ2(n− 3)n2
.

We can see that BB’s estimator variance tends to zero in a polynomial rate of order -2,

i.e., V arI(qI(X(1), X(n))) = O(n−2), therefore BB’s estimator is consistent as well and

converges to the function on interest in the same rate as Tate’s estimator.

Now we can compute the asymptotic relative efficiency of the estimators w.r.t. Model I

support:

lim
n→∞

(
MSEI(qI(X(n)))

MSEI(qII(X(1), X(n)))

)
=

τ 2

(θ − τ)2 + τ 2
.

We can see that asymptotically, for any τ < θ, Tate’s estimator has smaller risk.

Figure 1 illustrates the convergence rate of both estimators under Model I support as

a function of the sample size n, for θ = 1, when τ = 0.25 and when τ = 0.75. We can see

that under Model I support, Tate’s estimator has smaller risk for any finite sample size.

However asymptotic relative efficiency depends on τ . Figure 2 illustrates the asymptotic

MSE ratio of the estimators under Model I support for 0 ≤ τ ≤ 1 while θ = 1. We can see

that for small values of τ , Tate’s estimator posses much smaller risk. Tate’s estimators

preserves that superiority up to very large values of τ , such that if θ = τ + δ for arbitrary

small δ there is no significant difference between the two estimator’s asymptotic risks.

Now consider the converse situation, i.e., Model II support, γ > 0 when S = (γ, θ),

holds. In this case Tate’s estimator is clearly biased and does not converge to the function

of interest. In other words, in the case of relative large left truncation, the estimator will

converge in probability to the wrong function and will be inadequate estimator to the

tail probability. More specifically, the bias term will go asymptotically to some positive

proportional function of the unknown truncation parameters η = (γ, θ).

To conclude this example, we can say that mistakenly assuming left truncation will

result in significant deficiency in the efficiency and accuracy of the estimation for small

values of τ and small sample sizes as well; Tate’s estimator has uniformly (w.r.t. τ and n,

ceteris paribus) smaller risk for any reasonable τ and n, therefore Tate’s estimator should

be preferred when our goal is to estimate Pη(X > τ) and there is no reason to assume

left truncation.

8



Figure 1: The BB’s estimator MSE (dashed red) and Tate’s estimator MSE (solid blue)
convergence rate w.r.t Model I support as a function of n for θ = 1, when τ = 0.25 (left
panel) and when τ = 0.75 (right panel).

Figure 2: Asymptotic MSE ratio w.r.t. Model I support as a function of τ for θ = 1. The
red line in height 1 was added as a guideline.

.
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2.4 Analysis of the Tail Probability Function for B(α+ 1, 1) Dis-

tribution

In this example we consider the Beta distribution with parameters α + 1 and 1. As in

the uniform distribution example of Section 2.3, we start with construction of the density

function, by applying the principles described in Section 2.1. Afterwards, we will use the

distribution’s density function in order to derive the function of interest and compute the

densities of the relevant order statistics. Finally, we will present the estimators under both

models’ support and compute their cross-model properties, such as expectation and mean-

squared error. To conclude this example, we will compute the estimator’s asymptotic

efficiency w.r.t. both models support and draw conclusions regarding their appropriate

use under different sets of model assumptions.

We begin with computing the density function under Model I support. In other words,

suppose that S = (0, θ) holds, therefore the density of the B(α+ 1, 1) random variable is

given by

f I(x; γ0, θ) =
h(x)

g0(γ, θ)
1{0 ≤ x ≤ θ} =

(α + 1)xα

θα+1
1{0 ≤ x ≤ θ}. (10)

From this density function one can derive the function of interest of this example w.r.t.

Model I support (when η = η0 = (0, θ)):

Pη0(X > τ) =
g0(τ, θ)

g0(0, θ)
1{0 < τ < θ} = 1− τα+1

θα+1
1{0 < τ < θ}.

The function of interest w.r.t. Model II support (when η = (γ, θ), γ > 0) is given by

Pη(X > τ) =
g0(τ, θ)

g0(γ, θ)
1{γ < τ < θ} = 1− τα+1 − γα+1

θα+1 − γα+1
1{γ < τ < θ}.

Now, using (10) we can compute the joint density of (X(1), X(n)) under Model I support,

which is a vector of the minimal and maximal order statistic. Its density given by

f IX(1),X(n)
(y, t) =

n(n− 1)h(y)h(t)(g0(y, t))n−2

(g0(y, t))n
1{0 ≤ y ≤ t ≤ θ}

=
n(n− 1)(yt)α(tα+1 − yα+1)n−2(α + 1)2

θnα+n
1{0 ≤ y ≤ t ≤ θ}.

(11)

The density of the maximal order statistic X(n) w.r.t. Model I support is given by

f IX(n)
(t) =

(nα + n)tnα+n−1

θnα+n
1{0 ≤ t ≤ θ}.

In order to compute BB estimator’s variance we have to construct the joint density func-
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tion of (X(1), X(n)) under Model II support as well (when γ > 0). It can be shown that:

f IIX(1),X(n)
(y, t) =

n(n− 1)h(y)h(t)(g0(y, t))n−2

(g0(y, t))n
1{γ ≤ y ≤ t ≤ θ}

=
n(n− 1)(yt)α(tα+1 − yα+1)n−2(α + 1)2

(θα+1 − γα+1)n
1{γ ≤ y ≤ t ≤ θ}.

(12)

Using (3), we can show that Tate’s UMVUE w.r.t Model I support is given by

qI(X(n)) = 1−
(

1− 1

n

)(
τ

X(n)

)α+1

, 0 < τ < X(n). (13)

Its variance, w.r.t. Model I support can be computed explicitly and is given by

MSEI(qI(X(n))) = V arI(qI(X(n))) =
(τ
θ

)2(α+1) 1

n(n− 2)
. (14)

Using (4), we can show that BB’s UMVUE is given by

qII(X(1), X(n)) =

(
1− 1

n

)
−
(

1− 2

n

)
τα+1 −Xα+1

(1)

Xα+1
(n) −X

α+1
(1)

, X(1) < τ < X(n).

We are now move to discuss Model misspecification. Assume that Model I holds, i.e.,

S = (0, θ), then BB’s estimator is finite-sample biased estimator such that

EI
(
qII(X(1), X(n))

)
=

(
1 +

1

n

)
−
(τ
θ

)a+1

. (15)

Recall that the MSE can be written as

MSEI(qII(X(1)), X(n))) = EI(qII(X(1), X(n)))
2 − E2

I (qII(X(1), X(n))) + b2
I(qII(X(1), X(n)))

where E2
I (qII(X(1), X(n))) and b2

I(qII(X(1), X(n))) can be computed from the cross-model

expectation presented above. Therefore, if we compute E2
I (qII(X(1), X(n))) (for the com-

putation see Appendix A.5 ) we can find BB estimator’s cross-model MSE. Hence, by

change of variables and iterating use of integration by parts, one can obtain the following

result:

MSEI(qII(X(1), X(n))) =

(
1− 1

n

)2

− 2

((τ
θ

)α+1

− 2

n

)2

+
(n− 2)

n2(n− 3)

((τ
θ

)2(α+1) (τ
θ

)α+1

2n+ 2

)
−

(
1 +

1

n
−
(τ
θ

)α+1
)2

+

(
1

n

)2

.

Figure 3 illustrates the MSE ratio Tate/BB w.r.t. Model I support as a functions of τ and

α, whereas Figure 4 illustrates both estimators’ MSE convergence. All the computations

11



Figure 3: In the left panel we can see the approximately asymptotic MSE ratio Tate/BB
w.r.t. Model I support as a function of τ for θ = 1, α = 1. The approximation is done
by substituting n = 104 in expression for the MSE ratio. In the right panel we can see
the MSE ratio Tate/BB w.r.t. Model I support as a function of α for the same set of
parameters. Dashed black lines were added as a guidelines.

for this example can be found in Appendices A.3, A.4 and A.5.

Now consider the converse False Model error when Model II support holds, it can

be shown that Tate’s estimator is biased by a constant term and its MSE diverges (to

infinity).

2.5 Analysis of the Expectation Function Eη(X) for Uniform

Distribution

Let X1, ..., Xn be a sample size of n ≥ 4 from U(0, θ) where θ is unknown truncation

parameter. As in the previous examples, before we introduce the estimators, we start with

the construction of the density function, proceed with the construction of the function of

interest and density functions of the relevant order statistics.

We start with a construction of the density function w.r.t. Model I support, i.e.,

γ ≡ γ0 = 0, and S = (0, θ).

f I(x; γ0, θ) =
h(x)

g0(0, θ)
1{0 ≤ x ≤ θ} =

1

θ
1{0 ≤ x ≤ θ}.

Now, using the density function, we can derive the function of interest w.r.t. Model I

support:

Eη0(X) =
g1(0, θ)

g0(0, θ)
=
θ

2
.
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Figure 4: In the left panel we can see the convergence rate of the estimator’s MSE w.r.t.
Model I support as a function of n for θ = 1, α = 1 and τ = 0.9. The red dashed line
designates BB estimator’s MSE, where the solid blue line is for Tate’s estimator MSE. In
the right panel, we can see the convergence rate of the Tate/BB MSE ratio w.r.t. Model I
support as a function of n for the same set of parameters. Dashed black line was added
as a guideline.

Under Model II support, using the density function given above, we can present the new

function of interest which has undergone some changes as well:

Eη(X) =
g1(γ, θ)

g0(γ, θ)
=
γ + θ

2
.

Finally, we are ready to present the estimators. Starting with Tate’s estimator (see Eq. 1),

that is given by the following expression:

qI(X(n)) =
1

2
X(n)

(
1 +

1

n

)
.

Computation of the MSE w.r.t. Model I support yields

MSEI(qI(X(n))) = V arI(qI(X(n))) =

(
θ

2

)2
1

n(n+ 2)
.

Proceeding with BB’s estimator (see Eq. 4), derived under Model II support, is given by

qII(X(1), X(n)) =
1

2

(
X(1) +X(n)

)
.
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Computation of the variance w.r.t Model II support yields

MSEII(qII(X(1), X(n))) = V arII(qII(X(1), X(n))) =
(γ − θ)2

2(n+ 1)(n+ 2)
.

We are now ready to present the cross-model expectations. Suppose that Model II holds,

i.e., S = (γ, θ). Hence the expectation of Tate’s estimator w.r.t. Model II support is given

by

EII
(
qI(X(n))

)
=
γ + nθ

2n
.

From the result above, Tate’s estimator bias is obtained to be

bII
(
qII(X(1), X(n))

)
=
γ + nθ

2n
− θ + γ

2
=
γ + nθ − nθ − nγ

2n
=
γ(1− n)

2n

Therefore, asymptotically Tate’s estimator converges to the following function:

lim
n→∞

(EII
(
qI(X(n))

)
) =

1

2
θ

which is the expected value of uniform r.v. with only right truncation parameter θ, and

left known bound that is given by 0. Under Model II support Tate’s estimator bias term

asymptotically converges to −γ
2
, hence it is inconsistent estimator.

Suppose now that Model I support holds, i.e., η ≡ η0 = (γ0, θ) when γ0 = 0, and

S = (0, θ) :

EI
(
qII(X(1), X(n))

)
=

1

2
θ.

We can see that although BB’s estimator was derived w.r.t the improper support, it is

still unbiased.

We are now ready to compute the cross-models mean squared errors, this is in order

to (i) determine whether or not the estimators converge in distribution, and if so (ii) we

would like to compare their MSE’s in order to discuss their asymptotic efficiency. If

Model I holds, i.e., S = (γ = 0, θ), we obtain that the MSE of BB’s estimator is given by

MSEI
(
qII(X(1), X(n))

)
= V arI

(
qII(X(1), X(n))

)
=

θ2

(n+ 1)(n+ 2)
.

(16)

Next we compute Tate’s estimator mean squared error w.r.t. Model II support, i.e.,

S = (γ, θ), this MSE is given by

MSEII
(
qI(X(n))

)
(17)

=
γ2 (n2 − 5)− θ (θ + (θ − 2)n2 + 2(θ − 2)n)− 2γ(θ + (θ − 1)n− 2)

4n(n+ 2)
.

Figure 5 illustrates the convergence rate of the estimators’ MSE as a function of the
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Figure 5: In the left panel we can see the convergence rate of the estimator’s MSE w.r.t.
Model I support as a function of n for θ = 1, the red dashed line designates BB’s estimator
MSE when solid blue line is for Tate’s estimator MSE. In the left panel we can see the
convergence rate of the MSE ratio Tate/BB w.r.t. Model I support as a function of n for
θ = 1. Dashed black line added as a guideline.

sample size w.r.t. Model I support, and the convergence rate of the MSE ratio Tate/BB

w.r.t. Model I support as a function of the sample size, when θ = 1. From the illustration

we can learn that Tate’s estimator is uniformly better w.r.t. Model I support (i.e., has

smaller risk) for every reasonable sample size.

We now compare the estimator’s relative asymptotic efficiency. Assume that Model I

holds. The following interesting result is follows from 16

MSEI
(
qI(X(n))

)
MSEI

(
qII(X(1), X(n))

) =
n+ 1

n

1

4
−→
n→∞

1

4
.

We can see that w.r.t. Model I support, Tate’s estimator, which is UMVUE in that

case, is uniformly better (w.r.t. any sample size n) than the BB alternative, and asymptot-

ically has four times smaller risk (w.r.t. to any convex loss-function) than BB’s estimator.

Needles to say that due to Tate’s estimator constant bias term w.r.t. Model II support,

the estimator does not converge in distribution to the function of interest. Therefore it

inconsistent estimator and clearly asymptotically inefficient, since

lim
n→∞

(
MSEII

(
qI(X(n))

)
MSEII

(
qII(X(1), X(n))

)) = ∞.
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Figure 6: Divergence rate of the MSE ratio w.r.t. Model II support as a function of n for
θ = 1 and γ = 0.1.

Figure 6 illustrates this behaviour. The figure shows that already for small sample size the

MSE ratio is very large in favour of BB’s estimator, and the divergence rate is exponential

such that already for n = 40 the ratio exceed any reasonable value. Therefore, it is clear

that w.r.t. Model II support Tate’s estimators will result in inefficient and inaccurate

estimation.

In conclusion of this example we can say that if we mistakenly assume that there is

left truncation where in fact there is none, we can still perform quite good estimation with

BB’s estimator, although in this case the MSE will be at least four time larger then the

optimal scenario. Nevertheless, False Model II error, i.e., assuming that there is no left

truncation and using Tate’s estimator for the mean value, will result in a severe deficiency

since the estimator does not converge to the function of interest.

2.6 Conclusions

We have started our analysis with the estimation of the tail probability Pη(X > τ) in the

uniform distribution. We discovered that assuming left truncation when the actual sup-

port is (0, θ) has its price. BB’s estimator, although converges to the function of interest

in polynomial rate of order -2, has uniformly inferior MSE comparing to Tate’s UMVUE.

Moreover the inefficiency grows as τ decreases. However, the converse mistake will lead

to totally inappropriate estimation. The second example that deals with Beta(α + 1, 1)

random variable yields the same result. Finally we examined the expectation in the uni-
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form distribution. First we discovered that due to the symmetry property of the density

function, BB’s estimator is unbiased w.r.t. Model I support as well as w.r.t. Model II

support. This result assured once again that BB’s estimator will converge to the func-

tion of interest, therefore we focused the investigation on its MSE. Similar to the tail

probability example, Tate’s estimator is uniformly better then BB’s estimator such that

asymptotically Tate’s estimator has exactly four times smaller MSE then BB’s estimator.

In this scenario, as well as in the others examples, making the converse False Model error

results in great deficiency in estimation.
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3 Setting II: Exponential Family with Possible Left

Truncation

This chapter is organized as follows. An introduction to natural exponential families is

given in Section 3.1. In Section 3.2, we present an exponential distribution example. In

Section 3.3 an Erlang distribution example is presented. Finally, in Section 3.4, we discuss

the results of this chapter. All computations of this Chapter appear in Appendix B.

3.1 Construction and Notations

Consider a one-dimensional natural exponential family (hereafter abbreviated NEF) sup-

ported on S = (0,∞) generated by a function h : S → [0,∞), as follows. Define the

Laplace transform

L(θ, 0) =

∞∫
0

eθxh(x)dx

from the random variable’s support to the natural parameter effective domain D0 ≡ {θ ∈
R;L(θ, 0) <∞}. We assume that D0 has a non-empty interior Θ0. Define

k(θ, 0) = lnL(θ, 0).

The NEF corresponding to the natural parameter domain Θ0 is given by:

F0 = {Pθ,0(dx) = h(x)eθx−k(θ,0)1{0 < x <∞}dx, θ ∈ Θ}.

Thus, due to the fact that
∞∫

0

h(x)eθx−k(θ,0)dx = 1,

one can easily show that

L(θ, 0) =

∞∫
0

h(x)eθxdx = ek(θ,0).

It can be shown that k(θ, 0) is a strictly convex real analytic function on Θ0. From the

analytical properties of k(θ, 0), we conclude that any finite derivative ∂jkj(θ, 0)/∂θj exists.

Define kj(θ, 0), j ≥ 1, to be the j-th cumulant of F0, where in particular, µ0 = k1(θ, 0) is

the mean function of F0. The mean function of F0 defines a bijective function from the

natural parameter domain Θ0 to the mean domain Ω0 ≡ k1(Θ, 0).

Set γ > 0, and define the Laplace transform from the support S = (γ,∞) to the

natural parameters domain Dγ = {θ ∈ R;L(θ, γ) < ∞} which is L(θ, γ)’s effective

domain with a non-empty interior Θγ. The family of probability densities generated by
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the support S = (γ,∞) is of the following form:

Fγ = {Pθ,γ(dx) = h(x)eθx−k(θ,γ)1{γ < x <∞}dx, θ ∈ Θγ, γ > 0}.

Similarly to the role of µ0 as the mean function of F0, µγ = k1(θ, γ) is the mean

function of Fγ; where k1(θ, γ) is a bijective function from the natural parameters domain

Θ0 to Ωγ. Clearly Θ0 ⊆ Θγ because L(θ, γ) ≤ L(θ, 0), however for the sake of simplicity

we shall assume that Θ0 = Θγ, for all γ > 0. Due to the fact that k1(θ, 0) is a bijective

function between the Θ0 set and the corresponding mean domain Ω0, we will perform

the analysis w.r.t. the mean domain and then apply the inverse function on k1(θ, γ) to

translate the results back to the parameters set Θ0.

Our interest will focus on the first order and second order derivatives of k(θ, 0) and

k(θ, γ), which are the first and second cumulants, i.e., k1(θ, γ) = µγ and k2(θ, γ) = σ2
γ.

The first cumulant will serve to estimate functionals of µ0 and the second cumulant to

derive the asymptotic variance of the estimators.

3.2 Exponential Distribution Example

Consider an exponential distribution under Model I support S = (0,∞), i.e., X1, ..., Xn ∼
exp(λ, 0), such that λ = −θ, where θ is the natural parameter of the distribution, h(x) =

1{0 < x <∞}, the Laplace transform

L(θ, 0) =

∞∫
0

eθxh(x)dx = −1

θ
,

the natural parameter domain is given by Θ0 = (−∞, 0). Note that k(θ, 0) = ln(−θ) and

hence the mean domain is given by Ω0 = (0,∞). The maximum likelihood equation is

given by

k1(θ, 0) = −1

θ
= X̄n = µ̂I0.

Now consider an exponential distribution under Model II support, S = (γ,∞), i.e.,

X1, ..., Xn ∼ exp(λ, γ), where λ = −θ, h(x) = 1{γ < x <∞}, the Laplace transform

L(θ, γ) =

∞∫
γ

eθxh(x)dx = −1

θ
eθγ,

and the natural parameter domain is Θ0 = (−∞, 0). Note that k(θ, γ) = θγ− ln(−θ), and

hence the mean domain is given by Ωγ = (γ,∞). In this case the maximum likelihood

equation is given by

k1(θ, γ) = γ − 1

θ
= X̄n = µ̂γ. (18)
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Due to the fact that µ0 = −1
θ

and by pluging X(1) instead of γ in 18, we can derive

the following MLE for µ0 w.r.t Ωγ:

µ̂II0 = X̄n −X(1),

and hence, the MLE for the natural parameter is

θ̂II =
1

X(1) − X̄n

.

We now move to discuss model misspecification. Consider the scenario when the MLE

for θ was derived under Model I, however Model II actually holds. We should notice that

µγ = −1
θ

+ γ = µ0 + γ. Therefore,

− 1

X̄n

− θ a.s−→
II

θ2γ

1− θγ
, (19)

which means that the sequence
√
n(− 1

X̄n
− θ) goes to infinity. For computations of this

example see Appendix B.1. By simple calculations, we obtain that k2(θ, γ) = k2(θ, 0) = 1
θ2

which is quite unique observation which means that in the exponential case, truncation of

the r.v. is equivalent to shifting of the r.v. by a factor of γ. Indeed, Bar-Lev and Boukai

(2009) showed that this is the only case to which this property holds. These two results

are illustrated in Figure 7 .

We now move to consider the case when the MLE was derived under Model II, but

Model I holds. We first deal with a finite-simple behaviour of the MLE for the natural

parameter θ, and we then explore the asymptotic behaviour of the ML estimator.

We start with a finite sample behaviour of the MLE for the natural parameter θ. It

was shown by (Bar-lev and Boukai, 1985) that
∑n

i=1(Xi−X(1)) is distributed Erlang with

n − 1 and θ. Therefore, (
∑n

i=0(Xi − X(1)))
−1 has an Inverse-Gamma distribution. We

computed the MLE’s density function, which can be found to be

f I−θ̂II (y) =
θn−1

Γ(n− 2)
nn−1 1

yn
e−θn/y. (20)

For computations see Appendix B.1. For illustration see Figure 8. The MLE’s expected

value is nθ
n−2

, and therefore its bias is given by 2
n−2

. We computed its MSE, which is

given by (n(n+4)−12)θ2

(n−2)2(n−3)
. Clearly it is asymptotically unbiased, because the bias is O(n−1).

Figure 9 compares this MSE to the MSE of the MLE derived under the correct model,

i.e., Model I. Since the MSE converges to 0, we conclude that θ̂II converges in probability

to the natural parameter θ.

Now we are ready to discuss the asymptotic behaviour of the MLE for the natural

parameter θ. The rate of convergence of X(1) to γ is O(n−1), however the rate of con-

vergence of X̄n to µ0 is O(n−1/2). Hence, µ̂II0 goes to X̄n, and therefore asymptotically it

remains unbiased and the effect on the MLE’s variance vanishes asymptotically as well.

20



Figure 7: The left panel demonstrates the almost sure convergence of the sequence− 1
X̄n
−θ

to θ2γ
1−θγ = 2/3, for θ = −1 and γ = 2. The right panel demonstrates the divergence of the

sequence
√
n(− 1

X̄n
− θ) (to infinity). The simulation based on 3,000 random values from

exponential truncated distribution with parameters stated above.

Consequently

√
n
(
µ̂II0 − µ0

)
≡
√
n(X̄n −X(1) − µ0) =

√
n(X̄n − µ0)− op(1)

D−→
I
N (0, k2(θ, 0)) . (21)

Hence, using delta method (Ferguson, 1996), we can state that:

√
n

(
1

X(1) − X̄n

+
1

µ0

)
≡
√
n
(
θ̂II − θ

)
D−→
I
N
(

0,
1

k2(θ, 0)

)
(22)

where 1
X(1)−X̄n

= − 1
µ̂II0

= θ̂II is the MLE for the natural parameter θ under Model II

support. For illustration of the convergence to the normal distribution see Figure 10.

3.3 Erlang Distribution Example

Consider an Erlang-2 distribution under Model I support, S = (0,∞), i.e., X1, ..., Xn ∼
Erlang(2, λ, 0), where λ = −θ, and where θ is the distribution’s natural parameter. We

have h(x) = x1{0 < x <∞}, the Laplace transform L(θ, 0) = 1
θ2

, the natural parameter

domain is Θ0 = (−∞, 0), and similarly to the exponential distribution example, k1 (θ, 0) =
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Figure 8: The figure shows the density functions of the natural parameter’s MLE for
various sample sizes. The exponential distribution rate parameter is taken to be 1. We can
see that as n increases the distribution function becomes more symmetric and resembles
the normal asymptotic distribution which is its limit.

−2
θ

= µ0, and hence the mean domain is Ω0 = (0,∞). The ML equation is given by

−2

θ
= X̄n = µ̂I0.

Therefore, the MLE for θ under Model I support is θ̂I = − 2
µ̂I0

= − 2
X̄n

.

Now consider the Erlang-2 distribution under Model II support, S = (γ,∞), i.e.,

X1, ..., Xn ∼ Erlang(2, λ, γ), where λ = −θ, and h(x) = x1{γ < x < ∞}, the Laplace

transform L(θ, γ) = 1
θ2
eθγ (1− γθ) (for computations see Appendix B.4), and hence the

mean domain is given by Ωγ = (γ,∞), and the natural parameter domain is given by

Θ0 = (−∞, 0). It is easy to show that k1 (θ, γ) = −2
θ

+γ− γ
1−θγ = µγ. But since µ0 = −2

θ
,

simple computations shows

µγ = µ0 + γ − µ0γ

µ0 + 2γ
.
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Figure 9: Illustration of the MSE convergence of MLEs for the rate parameter λ in
exponential distribution with λ = 1, where λ = −θ, . In the left panel we can see the
MSE convergence of both MLEs w.r.t. Model I support. The solid red line represents the
MSE of the MLE derived under Model II support. Dashed blue line represents the MSE
of the MLE derived w.r.t. Model I support. The solid black line was added as a guideline.
In the right panel we can see the Model I/Model II MSE ratio convergence. The dashed
black line was added as a guideline.

Therefore, we can derive the maximum likelihood equation for µγ w.r.t. Ωγ mean domain:

X̄n = µ̂II0 +X(1) −
µ̂II0 X(1)

µ̂II0 + 2X(1)

.

Some simple algebra gives us the following maximum likelihood quadratic equation w.r.t

µ̂II0 in Ωγ mean domain:

0 = (µ̂II0 )2 + µ̂II0 (2X(1) − X̄n) + 2X(1)(X(1) − X̄n).

This equation has a.s. two real roots, of which only the root with the plus sign is positive

and therefore consistent with the Ω0 mean domain. Therefore, under Model II support,

the MLE for µ0 is:

µ̂II0 =
1

2

(
X̄n − 2X(1) +

√
4X(1)(X̄n −X(1)) + X̄2

n

)
.
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Figure 10: In the left panel we can see the asymptotic cross-model distribution of the MLE
for the rate parameter λ, such that λ = −θ. In the right panel we can see the empirical
cumulative distribution of the MLE (solid blue) vs. ECDF of Normal (0, 1) (solid red).
The simulation based on 1,000 ML estimators, where each of the estimators constructed
from 10,000 random values from exponential distribution with rate parameter equals 1.

Consequently we obtained the MLE for θ under Model II support

θ̂II = − 2

µ̂II0
= −4

(
X̄n − 2X(1) +

√
4X(1)(X̄n −X(1)) + X̄2

n

)−1

.

We now move to discuss model misspecification. Consider the scenario when the MLE

was derived under Model I support, however Model II holds. One can prove that

− 2

X̄n

− θ a.s−→
II

−θ3γ2

2 + θγ(θγ − 2)
. (23)

Hence, the sequence
√
n(− 2

X̄n
− θ) goes to infinity. For computations of this example see

Appendix B.2.

One can see that assuming S = (0,∞) while actually S = (γ,∞), for significantly

large truncation γ will result in a meaningful estimation deficiency.

We move to consider the scenario that the MLE was derived under Model II support,

but Model I holds. In this case we will derive the asymptotic behaviour of the MLE for

the natural parameter explicitly. The finite sample behaviour is analytically complicated

and is demonstrated using simulations.
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Figure 11: MLEs MSE ratio (Model I/Model II) for various sample sizes. The simulation
based on 100,000 ML estimators each of one constructed from various number of random
values (sample sizes) drawn from Gamma distribution with λ = 1 and k = 2.

.

In Figure 11 we can observe the rate of convergence of the MLEs MSE ratio for finite

sample sizes. As we can see, already for n = 200 the MSE ratio just slightly differs

from 1. Therefore there is no need in asymptotic sample sizes in order to perform efficient

estimation with Model II MLE when Model I support holds.

Now we are ready to discuss the asymptotic behaviour of the MLE for the natural

parameter. Similar to the exponential case, the rate of convergence of X(1) to γ is O(n−1),

but the rate of convergence of X̄n to µ0 is O(n−1/2), therefore µ̂II0 goes to X̄n. Hence by

iterating use of Slutsky lemma and Continuous Mapping theorem (see Ferguson, 1996,

Theorem 6) we can state that asymptotically µ̂II0 goes to µ0 with probability 1, and

therefore, µ̂II0 remains unbiased and efficient, i.e., the MLE’s variance meets the Cramer-

Rao lower bound for unbiased estimators of the natural parameter.

√
n(µ̂II0 − µ0)

D−→
I
N (0, k2(θ, 0)) .

Hence, using the delta method, and the fact that k2(θ, 0)/(k1(θ, 0))4 = 2/θ2

(−2/θ)4
= θ2

23
=

1
22

1
k2(θ,0)

we can deduce the following asymptotic behaviour:

√
n

(
− 2

µ̂II0
−− 2

µ0

)
≡
√
n
(
θ − θ̂II

)
D−→
I
N
(

0,
1

22k2(θ, 0)

)
.

25



For conclusion of the two examples presented above, we saw that assuming mistakenly

that Model II support holds and deriving the MLE for the natural parameter θ w.r.t.

S = (γ,∞) does not result in severe inefficiency. In this situation, due to the fast rate

(by a quadratic order faster then X̄n rate of convergence to the distribution mean) of

convergence of X(1) (which is the estimator of the left side truncation parameter γ) to γ,

the estimator remains asymptotically (i) unbiased and (ii) efficient. However, if we derive

the MLE for the natural parameter θ under Model I support, while actually Model II

holds, there will be a bias that will be proportional to the truncation parameter γ, i.e., the

estimator will converge almost surely to some function of θ and γ. Hence, using Model’s I

MLE for θ when actually Model II holds result in biased and inaccurate estimator.

3.4 Conclusions

In exponential and Erlang-2 distributions we saw that deriving the MLE for the natural

parameter w.r.t. Model II support will not cause severe deficiency to the estimations

process, that is due to the fact that the MLE asymptotically remains (i) unbiased and

(ii) efficient. However for finite samples the MLE for the natural parameter is a biased and

slightly inefficient estimator with an Inverse-Gamma like distribution up to multiplication

by a sample size. Further investigation is required in order to generalize the results to the

whole exponential families.
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4 Conclusions and Discussion

In this work we analysed the effect of left truncation parameter on estimation in continuous

distribution functions. We discussed two main settings; general continuous right truncated

models with possible left truncation and exponential families with possible left truncation.

In Setting I we illustrated the effect of introducing left truncation on estimation of the

tail probabilities. These analysis performed using uniform and Beta distributions. For

the uniform distribution the effect on the estimation of the mean function considered as

well. In Settings II we illustrated the effect of left truncation on maximum likelihood

estimators of the natural parameter in two representative examples of the NEF; The

exponential and Erlang-2 distributions used to derive a finite-sample and the asymptotic

effect of left truncation on the estimation process.

In conclusion of the investigation of continuous right truncated models with possible

left truncation, we learned that if we mistakenly assume that there is left truncation where

in fact there is none, we can still perform quite good estimation with BB’s estimator.

Although Tate’s estimator is uniformly better (w.r.t. to any convex risk function), BB’s

estimator converge to the function of interest in the same rate as the estimator that

was derived w.r.t. Model I support. Nonetheless, it is important to note that there is a

significant price for that mistake such that the MSE of BB’s estimator can be much larger

than Tate’s. For example, see the uniform distribution expectation estimators where

using BB’s estimator while Model I holds, will result in asymptotic four time larger MSE.

However, the converse error, i.e., assuming mistakenly that there is no left truncation and

using Tate’s estimator for the mean value, may result in severe deficit; the estimator will

not converge to the function of interest and will be generally inappropriate.

In conclusion of the investigation of exponential families with possible left truncation,

we can state that similar results yield the analysis of maximum likelihood estimators in

the exponential and Erlang-2 distributions as in Setting I. In the case where the right

model is Model I, however the MLE was derived under Model II support, this error will

not cause any deficiency in terms of asymptotic results. More specifically, the MLE for

the natural parameter will be asymptotically (i) unbiased and (ii) efficient when derived

under Model II support (where the right model is Model I). Furthermore, finite sample

analysis shows that the MLE distribution is Inverse-Gamma related. In the exponential

example we computed the explicit bias and MSE for finite sample sizes. These compu-

tations showed that there is finite-sample deficiency (bias and large MSE) that vanishes

asymptotically in this type of error. However, the converse error, i.e., assuming mistak-

enly that there is no left truncation and using the MLE w.r.t. Model I support may cause

severe deficiency because in this case the estimator will be biased by a constant term,

therefore it will diverge (to infinity) and be generally inappropriate. Further research is

required in order to generalize (if it is possible) the results and draw conclusions to the

whole exponential families.

Finally, we can state that based on the two examples described above, if there is a
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good reason to suspect that the model involves left truncation, we need not hesitate to

use the more complex estimator. This is due to the fact that a more complicated model

does not involve substantial loss in the estimation efficiency. Nevertheless, there is still a

price for using Model II estimators where Model I support holds, therefore if there is no

reason to assume left truncation - we should avoid doing so.
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A Computations for Chapter 2

A.1 Section 2.2, Example 1

Lemma 5. Let ξ(η0) = Eη0(X) = ξ(θ) = g1(γ0, θ)/g0(γ0, θ) with known γ0 = 0. Then

Tate’s estimator is given by

qI(X(n)) =
g1(0, X(n))

g0(0, X(n))

(
1− 1

n

)
+
X(n)

n
,

whenever the derivative ξ′(θ) = ∂ξ(θ)/∂θ exists and is continuous almost everywhere on

Θ = {(0, θ) : a < θ < b}.

Proof. Tate’s estimator is given by

qI(X(n)) = ξ(X(n)) +
ξ′(X(n))g0(0, X(n))

nh(X(n))
,

for any estimable function ξ(η0) ≡ ξ(θ) of the model’s only unknown parameter θ. There-

fore,

qI(θ) =
g1(0, θ)

g0(0, θ)
+

∂

∂θ

(
g1(0, θ)

g0(0, θ)

)
g0(0, θ)

nh(θ)
,

recall that,

gk(γ, θ) =

θ∫
γ

xkh(x)dx, k = 0, 1, 2, ...

Hence, using Liebniz rule w.r.t. Model I support, i.e., while γ ≡ γ0 = 0 yields

∂

∂θ
gk(γ0, θ) =

∂

∂θ

θ∫
0

xkh(x)dx = θkh(θ).

Applying the rule we obtain that

qI(θ) =
g1(0, θ)

g0(0, θ)
+
h(θ) (θg0(0, θ)− g1(0, θ))

g0(0, θ)2

g0(0, θ)

nh(θ)

=
g1(0, θ)

g0(0, θ)
+

g1(0, θ)

ng0(0, θ)
+
θ

n
.

By rearranging the equation and plugging X(n) instead of θ, one can show that

qI(X(n)) =
g1(0, X(n))

g0(0, X(n))

(
1− 1

n

)
+
X(n)

n
.
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A.2 Section 2.2, Example 3

Lemma 6. Under Model II, if ξ(η) = Eη(X) = ξ(γ, θ) = g1(γ, θ)/g0(γ, θ) the general

form of BB’s estimator is:

qII(X(1), X(n)) =
g1(X(1), X(n))

g0(X(1), X(n))
.

Proof. BB’s estimator general form is given by (4),whenever the partial derivations ξ1(γ, θ) =

∂ξ(γ, θ)/∂γ, ξ2(γ, θ) = ∂ξ(γ, θ)/∂θ, and ξ12(γ, θ) = ∂2ξ(γ, θ)/∂γ∂θ exist and are contin-

uous almost everywhere on Θ = {(γ, θ) : a < γ < θ < b}. In order to simplify the

calculations, we first calculate all the required derivation of the function of interest. Us-

ing Leibniz rule w.r.t. Model II support yields

∂

∂γ
gk(γ, θ) =

∂

∂γ

θ∫
γ

xkh(x)dx = −γkh(γ),

hence,

ξ1(γ, θ) =
h(γ) (g1(γ, θ)− γg0(γ, θ))

(g0(γ, θ))2 ,

similarly,

ξ2(γ, θ) =
h(θ) (θg0(γ, θ)− g1(γ, θ))

(g0(γ, θ))2 ,

finally,

ξ12(γ, θ) =
h(γ)h(θ) (θg0(γ, θ)− γg0(γ, θ)− 2g1(γ, θ) + 2γg0(γ, θ))

(g0(γ, θ))3 .

Plugging the results to the BB’s estimator and substituting θ with X(n) and γ with X(1),

yields

qII(X(1), X(n)) =
g1(X(1), X(n))

g0(X(1), X(n))
−

g1(X(1), X(n))

g0(X(1), X(n))n(n− 1)
+

X(1)

n− 1

+
X(n)

n− 1
−

g1(X(1), X(n))

g0(X(1), X(n))n(n− 1)

−
X(1)

n− 1
−

X(n)

n− 1
+ 2

g1(X(1), X(n))

g0(X(1), X(n))n(n− 1)

=
g1(X(1), X(n))

g0(X(1), X(n))
.

A.3 Section 2.4, Beta Distribution Example, Eq. 14

Lemma 7. Let X1, ..., Xn ∼ B(α + 1, 1). Suppose that Model I holds. Tate’s estimator

for

Pη0(X > τ) = 1− τα+1

θα+1
1{0 < τ < θ}.
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is given by

qI(X(n)) = 1−
(

1− 1

n

)(
τ

X(n)

)α+1

, X(1) < τ < X(n)

Moreover,

EI
(
qI(X(n))

)2
= 1− 2

(τ
θ

)a+1

+
(n− 1)2

n(n− 2)

(τ
θ

)2(a+1)

.

Proof. The first assertion follows from application of Example 2. Note that

EI
(
qI(X(n))

)2
=

θ∫
0

q2
I (t)fX(n)

(t)dt.

Recall that the density of the maximal order statistic X(n) w.r.t. Model I support is given

by

f IX(n)
(t) =

(nα + n)tnα+n−1

θnα+n
1{0 ≤ x ≤ θ},

hence, one can simplify the equation by expending
(
qI(X(n))

)2
,

EI
(
qI(X(n))

)2
= 1−

(
1− 1

n

)
2(na+ n)τa+1

θna+n

θ∫
0

ta(n−1)+n−2dt

+

(
1− 1

n

)2
(na+ n)τ 2(a+1)

θna+n

θ∫
0

ta(n−2)+n−3dt

= 1− 2
(τ
θ

)a+1

+
(n− 1)2

n(n− 2)

(τ
θ

)2(a+1)

.

A.4 Section 2.4, Beta Distribution Example, Eq. 15

Lemma 8. Let X1, ..., Xn ∼ B(α+ 1, 1). Suppose that Model I holds. BB’s estimator for

Pη0(X > τ) = 1− τα+1

θα+1
1{0 < τ < θ},

is given by

qII(X(1), X(n)) =

(
1− 1

n

)
−
(

1− 2

n

)
τα+1 −Xα+1

(1)

Xα+1
(n) −X

α+1
(1)

, X(1) < τ < X(n)

Moreover,

EI
(
qII(X(1), X(n))

)
= 1 +

1

n
−
(τ
θ

)a+1

.

Proof. The first assertion follows from Example 4. Note that

EI
(
qII(X(1), X(n))

)
=

θ∫
0

t∫
0

qII(y, t)f
I
X(1),X(n)

(y, t)dydt,
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while,

qII(X(1), X(n)) =

(
1− 1

n

)
−
(

1− 2

n

)
τα+1 −Xα+1

(1)

Xα+1
(n) −X

α+1
(1)

, X(1) < τ < X(n)

and

f IX(1),X(n)
(y, t) =

n(n− 1)(yt)α(tα+1 − yα+1)n−2(α + 1)2

θnα+n
1{0 ≤ y ≤ t ≤ θ}.

Hence, one can express the expectation of BB’s estimator w.r.t. Model I support as

EI
(
qII(X(1), X(n))

)
=

(
1− 1

n

)
−
(

1− 2

n

)( θ∫
0

n(n− 1)(a+ 1)τa+1ta

θna+n
dt

t∫
0

ya
(
ta+1 − ya+1

)n−3
dy

−
θ∫

0

n(n− 1)ta(a+ 1)2

θna+n
dt

t∫
0

y2a+1
(
ta+1 − ya+1

)n−3
dy

)
.

By changing the integration variable to x, such that x = ya+1 then dy = dx
ya(a+1)

we obtain

EI
(
qII(X(1), X(n))

)
=

(
1− 1

n

)
−
(

1− 2

n

)( θ∫
0

n(n− 1)(a+ 1)τa+1ta

θna+n
dt

=

ta+1∫
0

(
ta+1 − x

)n−3
dx

−
θ∫

0

n(n− 1)ta(a+ 1)

θna+n
dt

ta+1∫
0

x
(
ta+1 − x

)n−3
dx

)
.

Note that the first integral is a simple integral, but the second involves integration by

parts when v = x and u′ = (ta+1 − x). Solving these integrals yields,

EI
(
qII(X(1), X(n))

)
= 1 +

1

n
−
(τ
θ

)a+1

.
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A.5 Section 2.4, Beta Distribution Example, Computation of

EI

(
qII(X(1), X(n))

)2
Lemma 9. Let X1, ..., Xn ∼ B(α + 1, 1). Suppose that Model I holds. Hence the Second

moment of BB’s estimator is

EI
(
q2
II(X(1), X(n))

)
=

(
1− 1

n

)2

− 2

((τ
θ

)a+1

− 2

n

)
+

(
1− 2

n

)2
1

(n− 3)(n− 2)

((τ
θ

)2(a+1)

n(n− 1) +
(τ
θ

)a+1

2n+ 2

)
.

Proof. By definition, the second moment of BB’s estimator w.r.t. Model I support can be

obtained by

EI
(
q2
II(X(1), X(n))

)
=

θ∫
0

t∫
0

q2
II(y, t)f

I
X(1),X(n)

(y, t)dydt,

using the functions from Lemma 3, and the same change of variables, i.e., x = ya+1 where

dy = dx
ya(a+1)

, one can write the following equation as a sum of three integrals

EI
(
q2
II(X(1), X(n))

)
=

θ∫
0

n(n− 1)ta(a+ 1)τ 2(a+1)

θna+n
dt

ta+1∫
0

(
ta+1 − x

)n−4
dx

−
θ∫

0

n(n− 1)ta(a+ 1)2τa+1

θna+n
dt

ta+1∫
0

x
(
ta+1 − x

)n−4
dx

+

θ∫
0

n(n− 1)ta(a+ 1)

θna+n
dt

ta+1∫
0

x2
(
ta+1 − x

)n−4
dx,

note that the first integral is a simple one, while the second and the third involve, as

before, iterative use of integration by parts where v = x and v = x2 respectively and

u′ = (ta+1 − x). Solving these integrals yields,

EI
(
q2
II(X(1), X(n))

)
=

(
1− 1

n

)2

− 2

((τ
θ

)a+1

− 2

n

)
+

(
1− 2

n

)2
1

(n− 3)(n− 2)

((τ
θ

)2(a+1)

n(n− 1) +
(τ
θ

)a+1

2n+ 2

)
.
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B Computations for Chapter 3

B.1 Section 3.2, Exponential Distribution Example, Eq. 20

Lemma 10. Let X1, ..., Xn ∼ exp(λ), where λ = −θ. Then the MLE for λ w.r.t. Model II

support is given by

λ̂ =
n∑n

i=1(Xi −X(1))
.

Moreover,

f I
λ̂
(w) =

θn−1

(n− 2)!

nn−1

wn
exp{θn/w}.

Proof. Let
∑n

i=1(Xi − X(1)) be Y , where Y ∼ Erlang(n − 1, θ) (Bar-Lev and Boukai,

2009). Define W = n/Y , hence

FW (w) = P (W ≤ w)

= P
(n
w
≤ Y

)
= 1− FY

(n
w

)
,

therefore,

fW (w) =
∂

∂w

(
1− FY

(n
w

))
=

n

w2
fY

(n
w

)
=

θn−1

(n− 2)!

nn−1

wn
exp{θn/w}.

B.2 Section 3.2, Exponential Distribution Example, Eq. 19

Lemma 11. Let X1, ..., Xn ∼ exp(γ,−θ). Assume that the MLE for θ was derived under

Model I, however Model II actually holds. Then

− 1

X̄n

− θ a.s−→
II

θ2γ

1− θγ
.

Proof. The maximum likelihood equation for the mean function µγ w.r.t. Model II support

can be written as

X̄n = −1

θ
+ γ,

recall that the MLE for the natural parameter θ w.r.t. Model I support is −1/X̄n, hence

by rearranging the equation one can show that the maximum likelihood equation can be

written as
θ

1− θγ
= − 1

X̄n

.

It follows form the SLLN (Ferguson, 1996, Theorem 4) that the sample mean converges

a.s. to µγ = −1
θ

+ γ . Therefore, using the continuous mapping theorem (van der Vaart,
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2000, Theroem 2.3), the sequence − 1
X̄n

converge a.s. to θ
1−θγ , hence one can show that

the sequence − 1
X̄n
− θ converge a.s. to

θ

1− θγ
− θ =

θ2γ

1− θγ
.

B.3 Section 3.3, Erlang Distribution Example. Eq. 23

Lemma 12. Let X1, ..., Xn ∼ Erlang(γ, 2,−θ). If the MLE for the natural parameter θ

was derived under Model I support, however Model II holds, therefore

− 2

X̄n

− θ a.s−→
II

−θ3γ2

2 + θγ(θγ − 2)
.

Proof. The maximum likelihood equation for the mean function µγ w.r.t. Model II support

is given by

−2

θ
+ γ − γ

1− θγ
= X̄n.

Recall that −2/X̄n is the MLE for the natural parameter θ w.r.t. Model I support, hence

by rearranging the equation one can show that

− 2

X̄n

=
2θ(1− θγ)

2 + θγ(θγ − 2)
,

Clearly, by the SLLN (Ferguson, 1996, Theorem 4), the sample mean converge a.s. to

the mean function µγ = −2
θ

+ γ − γ
1−θγ . Hence, using the continuous mapping theo-

rem (van der Vaart, 2000, Theroem 2.3), one can show that the sequence − 2
X̄n

converge

a.s. to 2θ(1−θγ)
2+θγ(θγ−2)

, therefore the sequence − 2
X̄n
− θ converge a.s. to

2θ(1− θγ)

2 + θγ(θγ − 2)
− θ =

−θ3γ2

2 + θγ(θγ − 2)
.

B.4 Section 3.3, Laplace Transform - Erlang Distribution Ex-

ample

Lemma 13. For the Erlang-2 distribution under Model II support, S = (γ,∞), i.e.,

X1, ..., Xn ∼ Erlang(2, θ, γ) where the natural parameter domain is Θ = (−∞, 0), the

Laplace transform is

L(θ, γ) =
1

θ2
eθγ (1− γθ) .

Proof. By definition,

L(θ, γ) =

∞∫
γ

eθxh(x)dx.
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Note that h(x) = x1{γ < x <∞}, hence

L(θ, γ) =

θ∫
γ

xeθxdx,

define v = x and u′ = eθx and using integration by parts, one can show that

L(θ, γ) =
(x
θ
eθx
∣∣∣∞
γ
− 1

θ

∞∫
γ

eθxdx

= −γ
θ
eθγ +

1

θ2
eθγ

=
1

θ2
eθγ (1− γθ) .
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בפועל היא איננה, אין השלכות הרות גורל להנחה )השגויה( שישנה קטימה שמאלית כאשר 

האמידה. תוצאה זו נובעת מקצב ההתכנסות המהיר של  יעילות על 1
X  1 –לגבול השמאלי .

הוא  . בנוסף, אמד זה-מתכנס ל IIמודל  הנחת אמד הנראות המרבית תחתהראנו כי 

ראו(. -החסם התחתון של קרמראת  משיגה השגיאה הריבועיתאסימפטוטית חסר הטיה ויעיל )

בעל  הינו הקודם, פרק, בדומה לבדוגמאות אלו ההפוך רה מזאת, הראנו כי המקרהית

לאמידה לא מדויקת  םלהניח בשוגג כי אין קטימה משמאל גוררוצה לומר,  השלכות חמורות.

 . שגויהלפונקציה  almost surelyשהאומד יתכנס  וזאת משוםולא עקיבה 



 עם או בלי פרמטר קטימה?מודלים סטטיסטיים רציפים: 
 

 ולנטין ונצק

 

 תקציר

מקור הנתונים הוא מהתפלגות רציפה הנתמכת על הקטע כי הנחה שכיחה ה בנתוני אורך חיים

 0, b0-, כך שb  . מהנחת הרציפות נובע שתומך ההתפלגות אינו מכילatom points ,

חיוביות.  תהינה שעם כלי מדידה מדויק נקבל שכל התצפיות אך טבעי. לפיכך, 1-במיוחד לא ב

 משמאל והוא למעשה בעל הצורה הבחנה זו יכולה להניב השערה שהתומך האמיתי קטום

 ,b0-, כך ש   כאשר י נ, במקרה זה, אנו ניצבים בפני שאי לכךידוע. -הוא פרמטר לא

את המודל שבו התומך  Iמודל אפשריות )של מודל שגוי(. כדי לתאר זאת, נסמן ב סוגי שגיאות

הנכון הוא  0, b מודל, ואילוII  תומך הנכון הואה המקרה שבו יציין את  , bנציין  ,. לפיכך

כאשר המודל הנכון הוא  Iמודל כל אימת שבוצעה הסקה ע"ס תארע  False Model Iכי שגיאת 

. השאלה המתעוררת במקרה דנן היא False Model IIבאופן סימטרי תוגדר שגיאת . IIמודל 

 יותר? חמוראיזו משני סוגי הטעויות 

 

רציפים  ידון במודלים סטטיסטיים הראשון פרקעיקריים. ה עבודה זו מחולקת לשני פרקים

 תחילה כי ישנה קטימה משמאל הנחנו זה נבחן ונחקר התסריט הבא: פרקעבור  ים.יכלל

ה, דהיינו, התומך האמיתי של המודל הוא נכאשר בפועל היא אינ 0,S   כאשר  הוא

כי שגיאה מסוג זה אינה גורמת לגרעון גדול בתהליך האמידה במונחים  הראנופרמטר המודל. 

-של דיוק ויעילות אסימפטוטיים. תוצאה זו נובעת מקצב ההתכנסות המהיר של האמד של בר

כי במקרה  הראנו ,הנאמדת. בנוסף לכך לפונקציה( Bar-lev & Boukai, 1985לב ובוקעי )

קטימה כאשר בפועל התומך של המודל הוא  כי אין)בשוגג( ההפוך, כאשר אנו מניחים 

 ,S   האמד של ,Tate (Tate, 1959 אינו מתכנס )הנאמדת. לאמיתו של דבר,  לפונקציה

, ולכן עבור קטימה שמאלית גדולה, האמד קבוע ישנה הטיה בגודל Tateלאמד של במקרה זה 

    יגרום לאמידה לא מדויקת ובלתי יעילה.  Tateשל 

 

בשני מקרים פרטיים של  מרבית עבור הפרמטר הטבעי -באמדי נראות השני ידון פרקה

 3-בהתפלגות אקספוננציאלית ובהתפלגות ארלנג . הראנו כיאליתהמשפחה האקספוננצי
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 ולנטין ונצק  מאת:    

 ד"ר יאיר גולדברג : נחייתבה   
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